Cystatin B (CSTB) is a cysteine cathepsin inhibitor whose biallelic loss-of-function mutations in human result in defects in brain development and in neurodegeneration. The physiological function of CSTB is largely unknown, and the mechanisms underlying the human brain diseases remain poorly understood. We previously showed that CSTB modulates the proteolysis of the N-terminal tail of histone H3 (H3cs1) during in vitro neurogenesis. Here we investigated the significance of this mechanism in postnatal mouse brain. Spatiotemporal analysis of H3cs1 intensity showed that while H3cs1 in wild-type (wt) mice was found at varying levels during the first postnatal month, it was virtually absent in adult brain. We further showed that the high level of H3cs1 coincides with chromatin association of de novo synthesized cathepsin L suggesting a role for nuclear cathepsin L in brain development and maturation. On the contrary, the brains of Cstb–/– mice showed sustained H3cs1 proteolysis to adulthood with increased chromatin-associated cathepsin L activity, implying that CSTB regulates chromatin-associated cathepsin L activity in the postnatal mouse brain. As H3 tail proteolysis has been linked to cellular senescence in vitro, we explored the presence of several cellular senescence markers in the maturing Cstb–/– cerebellum, where we see increased levels of H3cs1. While several markers showed alterations in Cstb–/– mice, the results remained inconclusive regarding the association of deficient CSTB function with H3cs1-induced senescence. Together, we identify a molecular role for CSTB in brain with implications for brain development and disease.
We establish cystatin B (CSTB) as a regulator of histone H3 tail clipping in murine neural progenitor cells (NPCs) and provide evidence suggesting that epigenetic dysregulation contributes to the early pathogenesis in brain disorders associated with deficient CSTB function. We show that NPCs undergo regulated cleavage of the N-terminal tail of histone H3 at threonine 22 (H3T22) transiently upon induction of differentiation. CSTB-deficient NPCs present premature activation of H3T22 clipping during self-renewal mediated by increased activity of cathepsins L and B. During differentiation, the proportion of immature committed neurons undergoing H3T22 clipping is significantly higher in CSTB-deficient than in wild-type NPCs, with no observable decline within 12 days post-differentiation. CSTB-deficient NPCs exhibit significant transcriptional changes highlighting altered expression of nuclear-encoded mitochondrial genes. These changes are associated with significantly impaired respiratory capacity of differentiating NPCs devoid of CSTB. Our data expand the mechanistic understanding of diseases associated with CSTB deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.