Featured Application: The results of the present work can be used to develop vibration energy harvesters supplying wireless sensor nodes. This is feasible since the order of magnitude of harvested electrical power is 1 mW.Abstract: Wireless sensor networks usually rely on internal permanent or rechargeable batteries as a power supply, causing high maintenance efforts. An alternative solution is to supply the entire system by harvesting the ambient energy, for example, by transducing ambient vibrations into electric energy by virtue of the piezoelectric effect. The purpose of this paper is to present a simple engineering approach for the bandwidth optimization of vibration energy harvesting systems comprising multiple piezoelectric cantilevers (PECs). The frequency tuning of a particular cantilever is achieved by changing the tip mass. It is shown that the bandwidth enhancement by mass tuning is limited and requires several PECs with close resonance frequencies. At a fixed frequency detuning between subsequent PECs, the achievable bandwidth shows a saturation behavior as a function of the number of cantilevers used. Since the resonance frequency of each PEC is different, the output voltages at a particular excitation frequency have different amplitudes and phases. A simple power-transfer circuit where several PECs with an individual full wave bridge rectifier are connected in parallel allows one to extract the electrical power close to the theoretical maximum excluding the diode losses. The experiments performed on two-and three-PEC arrays show reasonable agreement with simulations and demonstrate that this power-transfer circuit additionally influences the frequency dependence of the harvested electrical power.
The frequencies of ambient vibrations are often low (below 30 Hz). A broadband (3 dB bandwidth is larger than 10 Hz at an acceleration amplitude of 9.81 m s−2) vibration based energy harvester is proposed for transducing mechanical energy at such low frequencies into electrical energy. The mechanical setup converts low frequency mechanical vibrations into high frequency resonance oscillations of the transducer. This conversion is done by mechanical impacts on two mechanical stoppers. The originality of the presented design is that both low-frequency and high-frequency oscillators are permanently mechanically coupled. In the equivalent mechanical circuit, this coupling is achieved by connecting the ends of the stiff spring to both seismic masses, whereas one seismic mass (collison member) is also attached to the soft spring used as the constitutive element of a low-frequency oscillator. Further, both mechanical oscillators are not realized as conventional cantilever beams. In particular, the high frequency oscillator with the natural frequency of 340 Hz is a disc-shaped diaphragm with attached piezoelectric elements and a seismic mass. It is shown that it is possible to convert mechanical vibrations with acceleration amplitude of 9.81 m s−2 in the region between approximately 7 and 25 Hz into electrical power larger than 0.1 mW with the maximum value of 0.8 mW. A simplified mathematical model based on piecewise linear coupled oscillators shows good agreement with experimental results. The ways to enhance the performance of the harvester and improve agreement with experiments are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.