Background: There is no effective therapy for patients with malignant pleural mesothelioma (MPM) who progressed to platinum-based chemotherapy and immunotherapy.
Methods:We aimed to investigate the antitumor activity of CDK4/6 inhibitors using in vitro and in vivo preclinical models of MPM.
Results:Based on publicly available transcriptomic data of MPM, patients with CDK4 or CDK6 overexpression had shorter overall survival. Treatment with abemaciclib or palbociclib at 100 nM significantly decreased cell proliferation in all cell models. Both CDK4/6 inhibitors significantly induced G1 cell cycle arrest thereby increasing cell senescence and increased the expression of interferon signalling pathway and tumour antigen presentation process in culture models of MPM. In vivo preclinical studies showed that palbociclib significantly reduced tumour growth and prolonged overall survival using distinct xenograft models of MPM implanted in athymic mice.Conclusions: Treatment of MPM with CDK4/6 inhibitors decreased cell proliferation, mainly by promoting cell cycle arrest at G1 and by induction of cell senescence. Our preclinical studies provide evidence for evaluating CDK4/6 inhibitors in the clinic for the treatment of MPM.
The pore-forming protein epsilon toxin (Etx) from Clostridium perfringens produces acute perivascular edema affecting several organs, especially the brain and lungs. Despite the toxin evident effect on microvasculature and endothelial cells, the underlying molecular and cellular mechanisms remain obscure. Moreover, no Etx-sensitive endothelial cell model has been identified to date. Here, we characterize the mouse lung endothelial cell line 1G11 as an Etx-sensitive cell line and compare it with the well-characterized Etx-sensitive Madin-Darby canine kidney epithelial cell line. Several experimental approaches, including morphological and cytotoxic assays, clearly demonstrate that the 1G11 cell line is highly sensitive to Etx and show the specific binding, oligomerization, and pore-forming activity of the toxin in these cells. Recently, the myelin and lymphocyte (MAL) protein has been postulated as a putative receptor for Etx. Here, we show the presence of Mal mRNA in the 1G11 cell line and the presence of the MAL protein in the endothelium of some mouse lung vessels, supporting the hypothesis that this protein is a key element in the Etx intoxication pathway. The existence of an Etx-sensitive cell line of endothelial origin would help shed light on the cellular and molecular mechanisms underlying Etx-induced edema and its consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.