Transparency is now a fundamental principle for data processing under the General Data Protection Regulation. We explore what this requirement entails for artificial intelligence and automated decision-making systems. We address the topic of transparency in artificial intelligence by integrating legal, social, and ethical aspects. We first investigate the ratio legis of the transparency requirement in the General Data Protection Regulation and its ethical underpinnings, showing its focus on the provision of information and explanation. We then discuss the pitfalls with respect to this requirement by focusing on the significance of contextual and performative factors in the implementation of transparency. We show that human–computer interaction and human-robot interaction literature do not provide clear results with respect to the benefits of transparency for users of artificial intelligence technologies due to the impact of a wide range of contextual factors, including performative aspects. We conclude by integrating the information- and explanation-based approach to transparency with the critical contextual approach, proposing that transparency as required by the General Data Protection Regulation in itself may be insufficient to achieve the positive goals associated with transparency. Instead, we propose to understand transparency relationally, where information provision is conceptualized as communication between technology providers and users, and where assessments of trustworthiness based on contextual factors mediate the value of transparency communications. This relational concept of transparency points to future research directions for the study of transparency in artificial intelligence systems and should be taken into account in policymaking.
In this article, we develop the concept of Transparency by Design that serves as practical guidance in helping promote the beneficial functions of transparency while mitigating its challenges in automated-decision making (ADM) environments. With the rise of artificial intelligence (AI) and the ability of AI systems to make automated and self-learned decisions, a call for transparency of how such systems reach decisions has echoed within academic and policy circles. The term transparency, however, relates to multiple concepts, fulfills many functions, and holds different promises that struggle to be realized in concrete applications. Indeed, the complexity of transparency for ADM shows tension between transparency as a normative ideal and its translation to practical application. To address this tension, we first conduct a review of transparency, analyzing its challenges and limitations concerning automated decision-making practices. We then look at the lessons learned from the development of Privacy by Design, as a basis for developing the Transparency by Design principles. Finally, we propose a set of nine principles to cover relevant contextual, technical, informational, and stakeholder-sensitive considerations. Transparency by Design is a model that helps organizations design transparent AI systems, by integrating these principles in a step-by-step manner and as an ex-ante value, not as an afterthought.
The global Covid-19 pandemic has resulted in social and economic disruption unprecedented in the modern era. Many countries have introduced severe measures to contain the virus, including travel restrictions, public event bans, non-essential business closures and remote work policies. While digital technologies help governments and organizations to enforce protection measures, such as contact tracing, their rushed deployment and adoption also raises profound concerns about surveillance, privacy and data protection. This article presents two critical cases on digital surveillance technologies implemented during the Covid-19 pandemic and delineates the privacy implications thereof. We explain the contextual nature of privacy trade-offs during a pandemic and explore how regulatory and technical responses are needed to protect privacy in such circumstances. By providing a multi-disciplinary conversation on the value of privacy and data protection during a global pandemic, this article reflects on the implications digital solutions have for the future and raises the question of whether there is a way to have expedited privacy assessments that could anticipate and help mitigate adverse privacy implications these may have on society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.