Dramatic changes in the technology landscape marked by increasing scales and pervasiveness of compute and data have resulted in the proliferation of edge applications aimed at effectively processing data in a timely manner. As the levels and fidelity of instrumentation increases and the types and volumes of available data grow, new classes of applications are being explored that seamlessly combine real-time data with complex models and data analytics to monitor and manage systems of interest. However, these applications require a fluid integration of resources at the edge, the core, and along the data path to support dynamic and data-driven application workflows, that is, they need to leverage a computing continuum. In this article, we present our vision for enabling such a computing continuum and specifically focus on enabling edge-to-cloud integration to support data-driven workflows. The research is driven by an online data-driven tsunami warning use case that is supported by the deployment of large-scale national environment observation systems. This article presents our overall approach as well as current status and next steps.
Whole genome and exome sequencing (WGS/WES) are the most popular next‐generation sequencing (NGS) methodologies and are at present often used to detect rare and common genetic variants of clinical significance. We emphasize that automated sequence data processing, management, and visualization should be an indispensable component of modern WGS and WES data analysis for sequence assembly, variant detection (SNPs, SVs), imputation, and resolution of haplotypes. In this manuscript, we present a newly developed findable, accessible, interoperable, and reusable (FAIR) bioinformatics‐genomics pipeline Java based Whole Genome/Exome Sequence Data Processing Pipeline (JWES) for efficient variant discovery and interpretation, and big data modeling and visualization. JWES is a cross‐platform, user‐friendly, product line application, that entails three modules: (a) data processing, (b) storage, and (c) visualization. The data processing module performs a series of different tasks for variant calling, the data storage module efficiently manages high‐volume gene‐variant data, and the data visualization module supports variant data interpretation with Circos graphs. The performance of JWES was tested and validated in‐house with different experiments, using Microsoft Windows, macOS Big Sur, and UNIX operating systems. JWES is an open‐source and freely available pipeline, allowing scientists to take full advantage of all the computing resources available, without requiring much computer science knowledge. We have successfully applied JWES for processing, management, and gene‐variant discovery, annotation, prediction, and genotyping of WGS and WES data to analyze variable complex disorders. In summary, we report the performance of JWES with some reproducible case studies, using open access and in‐house generated, high‐quality datasets.
Background Genetic disposition is considered critical for identifying subjects at high risk for disease development. Investigating disease-causing and high and low expressed genes can support finding the root causes of uncertainties in patient care. However, independent and timely high-throughput next-generation sequencing data analysis is still a challenge for non-computational biologists and geneticists. Results In this manuscript, we present a findable, accessible, interactive, and reusable (FAIR) bioinformatics platform, i.e., GVViZ (visualizing genes with disease-causing variants). GVViZ is a user-friendly, cross-platform, and database application for RNA-seq-driven variable and complex gene-disease data annotation and expression analysis with a dynamic heat map visualization. GVViZ has the potential to find patterns across millions of features and extract actionable information, which can support the early detection of complex disorders and the development of new therapies for personalized patient care. The execution of GVViZ is based on a set of simple instructions that users without a computational background can follow to design and perform customized data analysis. It can assimilate patients’ transcriptomics data with the public, proprietary, and our in-house developed gene-disease databases to query, easily explore, and access information on gene annotation and classified disease phenotypes with greater visibility and customization. To test its performance and understand the clinical and scientific impact of GVViZ, we present GVViZ analysis for different chronic diseases and conditions, including Alzheimer’s disease, arthritis, asthma, diabetes mellitus, heart failure, hypertension, obesity, osteoporosis, and multiple cancer disorders. The results are visualized using GVViZ and can be exported as image (PNF/TIFF) and text (CSV) files that include gene names, Ensembl (ENSG) IDs, quantified abundances, expressed transcript lengths, and annotated oncology and non-oncology diseases. Conclusions We emphasize that automated and interactive visualization should be an indispensable component of modern RNA-seq analysis, which is currently not the case. However, experts in clinics and researchers in life sciences can use GVViZ to visualize and interpret the transcriptomics data, making it a powerful tool to study the dynamics of gene expression and regulation. Furthermore, with successful deployment in clinical settings, GVViZ has the potential to enable high-throughput correlations between patient diagnoses based on clinical and transcriptomics data.
Over the last few decades, genomics is leading toward audacious future, and has been changing our views about conducting biomedical research, studying diseases, and understanding diversity in our society across the human species. The whole genome and exome sequencing (WGS/WES) are two of the most popular next-generation sequencing (NGS) methodologies that are currently being used to detect genetic variations of clinical significance. Investigating WGS/WES data for the variant discovery and genotyping is based on the nexus of different data analytic applications. Although several bioinformatics applications have been developed, and many of those are freely available and published. Timely finding and interpreting genetic variants are still challenging tasks among diagnostic laboratories and clinicians. In this study, we are interested in understanding, evaluating, and reporting the current state of solutions available to process the NGS data of variable lengths and types for the identification of variants, alleles, and haplotypes. Residing within the scope, we consulted high quality peer reviewed literature published in last 10 years. We were focused on the standalone and networked bioinformatics applications proposed to efficiently process WGS and WES data, and support downstream analysis for gene-variant discovery, annotation, prediction, and interpretation. We have discussed our findings in this manuscript, which include but not are limited to the set of operations, workflow, data handling, involved tools, technologies and algorithms and limitations of the assessed applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.