The spine apparatus is an essential component of dendritic spines of cortical and hippocampal neurons, yet its functions are still enigmatic. Synaptopodin (SP), an actin-binding protein, is tightly associated with the spine apparatus and it may play a role in synaptic plasticity, but it has not yet been linked mechanistically to synaptic functions. We studied endogenous and transfected SP in dendritic spines of cultured hippocampal neurons and found that spines containing SP generate larger responses to flash photolysis of caged glutamate than SP-negative ones. An NMDA-receptor-mediated chemical long-term potentiation caused the accumulation of GFP-GluR1 in spine heads of control but not of shRNA-transfected, SP-deficient neurons. SP is linked to calcium stores, because their pharmacological blockade eliminated SP-related enhancement of glutamate responses, and release of calcium from stores produced an SP-dependent increase of GluR1 in spines. Thus, SP plays a crucial role in the calcium store-associated ability of neurons to undergo long-term plasticity.
Gaucher disease is a glycosphingolipid storage disease caused by defects in the activity of the lysosomal hydrolase, glucocerebrosidase (GlcCerase), resulting in accumulation of glucocerebroside (glucosylceramide, GlcCer) in lysosomes. The acute neuronopathic type of the disease is characterized by severe loss of neurons in the central nervous system, suggesting that a neurotoxic agent might be responsible for cellular disruption and neuronal death. We now demonstrate that upon incubation with a chemical inhibitor of GlcCerase, conduritol-B-epoxide (CBE), cultured hippocampal neurons accumulate GlcCer. Surprisingly, increased levels of tubular endoplasmic reticulum elements, an increase in [Ca 2؉ ] i response to glutamate, and a large increase in [Ca 2؉ ] i release from the endoplasmic reticulum in response to caffeine were detected in these cells. There was a direct relationship between these effects and GlcCer accumulation since co-incubation with CBE and an inhibitor of glycosphingolipid synthesis, fumonisin B 1 , completely antagonized the effects of CBE. Similar effects on endoplasmic reticulum morphology and [Ca 2؉ ] i stores were observed upon incubation with a short-acyl chain, nonhydrolyzable analogue of GlcCer, C 8 -glucosylthioceramide. Finally, neurons with elevated GlcCer levels were much more sensitive to the neurotoxic effects of high concentrations of glutamate than control cells; moreover, this enhanced toxicity was blocked by pre-incubation with ryanodine, suggesting that [Ca 2؉ ] i release from ryanodine-sensitive intracellular stores can induce neuronal cell death, at least in neurons with elevated GlcCer levels. These results may provide a molecular mechanism to explain neuronal dysfunction and cell death in neuronopathic forms of Gaucher disease.
The role of synaptopodin (SP), an actin-binding protein residing in dendritic spines, in synaptic plasticity was studied in dissociated cultures of hippocampus taken from control and SP knock-out (SPKO) mice. Unlike controls, SPKO cultures were unable to express changes in network activity or morphological plasticity after intense activation of their NMDA receptors. SPKO neurons were transfected with SP-GFP, such that the only SP resident in these neurons is the fluorescent species. The localization and intensity of the transfected SP were similar to that of the native one. Because less than half of the spines in the transfected neurons contained SP, comparisons were made between SP-containing (SP(ϩ)) and SP lacking (SP(Ϫ)) spines in the same dendritic segments. Synaptic plasticity was induced either in the entire network by facilitation of the activation of the NMDA receptor, or specifically by local flash photolysis of caged glutamate. After activation, spines that were endowed with SP puncta were much more likely to expand than SP(Ϫ) spines. The spine expansion was suppressed by thapsigargin, which disables calcium stores. The mechanism through which SP may promote plasticity is indicated by the observations that STIM-1, the sensor of calcium concentration in stores, and Orai-1, the calcium-induced calcium entry channel, are colocalized with SP, in the same dendritic spines. The structural basis of SP is likely to be the spine apparatus, found in control but not in SPKO cells. These results indicate that SP has an essential, calcium store-related role in regulating synaptic plasticity in cultured hippocampal neurons.
The ability to monitor ongoing changes in the shape of dendritic spines has important implications for the understanding of the functional correlates of the great variety of shapes and sizes of dendritic spines in central neurons. We have monitored and threedimensionally reconstructed dendritic spines in cultured hippocampal neurons over several hours of observation in a confocal laser scanning microscope. In the absence of extrinsic stimulation, the dimensions of dendritic spines of 3-week-old cultured neurons did not change to any significant degree over 3-4 hr in the culture dish, unlike the case with younger cultures. Releasing calcium from stores with pulse application of caffeine causes a transient rise of [Ca 2؉ ]i in dendrites and spines, monitored with the calcium dye Oregon-green. Application of caffeine to a dendrite imaged with calcein caused a fast and significant increase in the size of existing dendritic spines and could lead to formation of new ones. This effect is mediated by calcium released from the ryanodine-sensitive stores, as application of caffeine in the presence of ryanodine blocked this effect on the morphology of dendritic spines. Thus, release of calcium from stores is sufficient to produce significant changes in the shape of dendritic spines of cultured hippocampal neurons. DDendritic spines of central neurons can undergo large, rapid, and persistent morphological changes in response to variations in ambient afferent activity. These morphological changes, including elongation, shrinkage, bifurcation or expansion of spine heads, are intuitively associated with changes in the strength of synaptic efficacy underlying long-term memory (1, 2). The molecular mechanisms as well as the functional relevance of changes in spine dimensions are not known. In earlier studies, we found that dendritic spines of cultured hippocampal neurons contain independently regulated, ryanodine-sensitive calcium stores (3). These can be triggered to release calcium into the intracellular milieu with caffeine, an effect that is blocked by ryanodine. Calcium stores have been implicated in regulation of plasticity in central neurones (2,(4)(5)(6). We now examine the hypothesis that calcium released from stores can lead to changes in the morphology of dendritic spines of cultured hippocampal neurons. We developed conditions that allow us to monitor cultured neurons over hours in vitro, reconstruct them in three dimensions (3D) by using a confocal laser scanning microscope, and detect changes in their morphology on exposure to caffeine. We found that caffeine can produce ryanodine-sensitive elongation of dendritic spines in culture over several hours of observations. These changes may have important functional implications for spine͞dendrite interactions. Materials and MethodsHippocampal cultures were prepared as described (7). In brief, dissociated hippocampi of 19-day-old embryos were plated onto poly-L-lysine-coated 12-mm glass coverslips in Eagle's minimal essential medium (MEM) containing 5% heat-inactivated h...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.