In order to evaluate whether base modifications, apurinic/apyrimidinic site formation, strand breaks, or a combination of these lesions results from the interaction of glycation products with DNA, plasmid DNA was first reacted with these products, and then subjected to digestion with endonuclease III and endonuclease IV of Escherichia coli. Analysis of the differential effects of digestions with these enzymes by electrophoresis on agarose gels demonstrated that reactive glycation products produce both base modification and apurinic/apyrimidinic sites in DNA, in addition to the strand breaks observed after incubation with glycation products alone. These types of DNA damage may occur in specific diabetic cells where elevated levels of glycating sugars are associated with pathologic dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.