Millimeter wave (mmWave) and terahertz (THz) radio access technologies (RAT) are expected to become a critical part of the future cellular ecosystem providing an abundant amount of bandwidth in areas with high traffic demands. However, extremely directional antenna radiation patterns that need to be utilized at both transmit and receive sides of a link to overcome severe path losses, dynamic blockage of propagation paths by large static and small dynamic objects, macroand micromobility of user equipment (UE) makes provisioning of reliable service over THz/mmWave RATs an extremely complex task. This challenge is further complicated by the type of applications envisioned for these systems inherently requiring guaranteed bitrates at the air interface. This tutorial aims to introduce a versatile mathematical methodology for assessing performance reliability improvement algorithms for mmWave and THz systems. Our methodology accounts for both radio interface specifics as well as service process of sessions at mmWave/THz base stations (BS) and is capable of evaluating the performance of systems with multiconnectivity operation, resource reservation mechanisms, priorities between multiple traffic types having different service requirements. The framework is logically separated into two parts: (i) parameterization part that abstracts the specifics of deployment and radio mechanisms, and (ii) queuing part, accounting for details of the service process at mmWave/THz BSs. The modular decoupled structure of the framework allows for further extensions to advanced service mechanisms in prospective mmWave/THz cellular deployments while keeping the complexity manageable and thus making it attractive for system analysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.