Teratology is the science that studies the causes, mechanisms, and patterns of abnormal development. The authors present an updated overview of the most important milestones and stages of the development of modern teratology. Development of knowledge and society led to the recognition that causes of congenital developmental disorders (CDDs) might be caused by various mechanical effects, foetal diseases, and retarded or arrested development of the embryo and foetus. Based on the analysis of the historical development of hypotheses and theories representing a decisive contribution to this field, we present a survey of the six Wilson′s fundamental principles of teratology. The aim of observing these principles is to get insight into developmental relations and to understand mechanisms of action on the level of cell populations (elementary morphogenetic processes), tissues and organs. It is important to realise that any negative intervention into the normal course of these processes, either on genetic or non-genetic basis, inevitably leads to a sequence of subsequent changes resulting in CDDs. Moreover, the classical toxicologic monotonic dose-response paradigm recently has been challenged by the so-called “low dose-hypothesis”, particularly in the case of endocrine active substances. These include some pesticides, dioxins, polychlorobiphenyls (PCBs), and bisphenol A. Despite modern approaches of molecular biology and genetics, along with top diagnostic techniques, we are still not able to identify the actual cause in more than 65 to 70% of all congenital defects classified as having an unknown etiology. Today CDDs include any birth defect, either morphological, biochemical, or behavioural.
Decreased oxygenation during pregnancy and early periods of ontogeny can affect normal body development and result in diseases in adulthood. The aim of this study was to use the model of prenatal intermittent hypoxia (PIH) and evaluate the effects of short-term hypoxia at the end of gestation on blood pressure (BP) control in adulthood. Wistar rats were exposed daily to PIH for 4 h during gestational day 19 and 20. In adult male rats, heart rate (HR), systolic BP and pulse pressure (PP) were acquired by radiotelemetry during 1 week. On the basis of HR variability and BP variability, sympathovagal balance (LF/HF) and spontaneous baroreflex sensitivity (sBRS) were evaluated. Systolic BP and PP were significantly elevated in PIH rats in comparison with control rats during the light and dark phase of the day, while LF/HF increased only during the light phase of the day. In contrast, sBRS tended to decrease only during the dark phase in PIH rats. In all measured and calculated parameters, significant circadian rhythms were present and were not affected by PIH. In conclusion, our data suggest that short intermittent hypoxia at the end of gestation can increase BP and PP via significant changes in LF/HF, which occur especially during the passive phase of the day. Results suggest that minor changes in the autonomous nervous system activity induced by environmental conditions during the perinatal period may contribute to development of hypertension in adulthood.
Human epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exerts a profound influence on physiological function and risk of disease in adult life. The molecular, cellular, metabolic, endocrine and physiological adaptations to intrauterine nutritional conditions result in permanent alterations of cellular proliferation and differentiation of tissues and organ systems, which in turn can manifest by pathological consequences or increased vulnerability to chronic diseases in adulthood. Intrauterine growth restriction (IUGR) due to intrauterine development derangements is considered the important factor in development of such diseases as essential hypertension, diabetes mellitus, ischemic diseases of the heart, osteoporosis, respiratory, neuropsychiatric and immune system diseases.An early life exposures to dietary and environmental exposures can have a important effect on epigenetic code, resulting in diseases developed later in life. The concept of the "developmental programming" and Developmental Origins of Adult Diseases (DOHaD) has become well accepted because of the compelling animal studies that have precisely defined the outcomes of specific exposures.The environmental pollullutants and other chemical toxicants may influence crucial cellular functions during critical periods of fetal development and permanently alter the structure or function of specific organ systems. Developmental epigenetics is believed to establish "adaptive" phenotypes to meet the demands of the later-life environment. Resulting phenotypes that match predicted later-life demands will promote health, while a high degree of mismatch will impede adaptability to later-life challenges and elevate disease risk. The rapid introduction of synthetic chemicals, environmental pollutants and medical interventions, may result in conflict with the programmed adaptive changes made during early development, and explain the alarming increases in some diseases.
Acute perinatal asphyxia is a major cause of death and neurological injury in newborn infants. Severe asphyxia can occur in infants around the time of birth for several reasons. The aim of our study was to find the most sensitive, easily obtainable and fast assessable parameter of the presence and quantification of asphyxia.In our study 39 term newborns (15 healthy term newborns and 24 asphyxial term newborns), from vaginal deliveries admitted within 24 hours of life were monitored and parameters of blood count from venous blood were assessed. Laboratory findings of blood count parameters revealed significant differences between term asphyxial and healthy newborns in erythrocyte count and hemoglobin and hematocrit values.Hematological changes observed early after delivery can determine the duration of hypoxemia (acute vs. chronic) and asphyxia of short duration may be accompanied without occurrence of polyglobulia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.