This is one in a series of papers devoted to the foundations of Symplectic Field Theory sketched in [4]. We prove compactness results for moduli spaces of holomorphic curves arising in Symplectic Field Theory. The theorems generalize Gromov's compactness theorem in [8] as well as compactness theorems in Floer homology theory, [6,7], and in contact geometry, [9,19].
L'accès aux archives de la revue « Annales de l'I. H. P., section C » (http://www.elsevier.com/locate/anihpc) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/
NE: Zehnder, Eduard: This work is subject to copyright. AII rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained.
In this paper we prove Morse type inequalities for the contractible 1-periodic solutions of time dependent Hamiltonian differential equations on those compact symplectic manifolds M for which the symplectic form and the first Chern class of the tangent bundle vanish over q ( M ) . The proof is based on a version of infinite dimensional Morse theory which is due to Floer. The key point is an index theorem for the Fredholm operator which plays a central role in Floer homology. The index formula involves the Maslov index of nondegenerate contractible periodic solutions. This Maslov index plays the same role as the Morse index of a nondegenerate critical point does in finite dimensional Morse theory. We shall use this connection between Floer homology and Maslov index to establish the existence of infinitely many periodic solutions having integer periods provided that every I-periodic solution has at least one Floquet multiplier which is not equal to 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.