In this paper, we report on spectral features emitted by a reaction shaft occurring in flash smelting of copper concentrates containing sulfide copper minerals such as chalcopyrite (CuFeS2), bornite (Cu5FeS4) and pyrite (FeS2). Different combustion conditions are addressed, such as sulfur-copper ratio and oxygen excess. Temperature and spectral emissivity features are estimated for each case by using the two wavelength method and radiometric models. The most relevant results have shown an increasing intensity behavior for higher sulfur-copper ratios and oxygen contents, where emissivity is almost constant along the visible spectrum range for all cases, which validates the gray body assumption. CuO and FeO emission line features along the visible spectrum appear to be a sensing alternative for describing the combustion reactions.
MANUEL PÉ REZ-TELLO, VI´CTOR R. PARRA-SÁ NCHEZ, VI´CTOR M. SÁ NCHEZ-CORRALES, AGUSTI´N GÓ MEZ-Á LVAREZ, FRANCISCO BROWN-BOJÓ RQUEZ, ROBERTO A. PARRA-FIGUEROA, EDUARDO R. BALLADARES-VARELA, and EUGENIA A. ARANEDA-HERNÁ NDEZ An experimental study was conducted to elucidate the evolution of size and chemical composition of La Caridad copper concentrate particles during oxidation under simulated flash smelting conditions. Input variables tested included particle size and oxygen concentration in the process gas. The response variables included the size distributions, chemical composition, and morphology of the reacted particles at seven locations along a laboratory reactor. Particles with initial size < 45 lm contained mostly chalcopyrite, they increased their mean size and decreased the amount of dust in the population during oxidation. This was explained by a reaction path involving rapid melting followed by collision and coalescence of reacting droplets during flight. Particles with sizes > 45 lm contained varying amounts of chalcopyrite and pyrite, and tended to either maintain or decrease their mean size upon oxidation. When size reduction was observed, dust was produced because of fragmentation, and the particles showed no evidence of collisions during flight. The main oxidation products detected in the particles consisted of matte, cuprospinel, and magnetite. A plot of the mean size divided by the mean size in the feed against the fraction of sulfur eliminated generalized the experimental data so far reported in the literature, and helped identify the reaction path followed by the particles.
In this paper, we report on the spectral detection of wustite, Fe(II) oxide (FeO), and magnetite, Fe(II, III) oxide (Fe3O4), molecular emissions during the combustion of pyrite (FeS2), in a laboratory-scale furnace operating at high temperatures. These species are typically generated by reactions occurring during the combustion (oxidation) of this iron sulfide mineral. Two detection schemes are addressed: the first consisting of measurements with a built-in developed spectrometer with a high sensitivity and a high spectral resolution. The second one consisting of spectra measured with a low spectral resolution and a low sensitivity commercial spectrometer, but enhanced and analyzed with post signal processing and multivariate data analysis such as principal component analysis (PCA) and a multivariate curve resolution—the alternating least squares method (MCR-ALS). A non-linear model is also proposed to reconstruct spectral signals measured during pyrite combustion. Different combustion conditions were studied to evaluate the capacity of the detection schemes to follow the spectral emissions of iron oxides. The results show a direct correlation between FeO and Fe3O4 spectral features intensity, and non-linear relations with key combustion variables such as flame temperature, and the combusted sulfide mineral particle size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.