"Lysosomal glycogen storage disease with normal acid maltase" which was originally described by Danon et al., is characterized clinically by cardiomyopathy, myopathy and variable mental retardation. The pathological hallmark of the disease is intracytoplasmic vacuoles containing autophagic material and glycogen in skeletal and cardiac muscle cells. Sarcolemmal proteins and basal lamina are associated with the vacuolar membranes. Here we report ten unrelated patients, including one of the patients from the original case report, who have primary deficiencies of LAMP-2, a principal lysosomal membrane protein. From these results and the finding that LAMP-2-deficient mice manifest a similar vacuolar cardioskeletal myopathy, we conclude that primary LAMP-2 deficiency is the cause of Danon disease. To our knowledge this is the first example of human cardiopathy-myopathy that is caused by mutations in a lysosomal structural protein rather than an enzymatic protein.
Mammalian cytochrome c oxidase (COX) catalyses the transfer of reducing equivalents from cytochrome c to molecular oxygen and pumps protons across the inner mitochondrial membrane. Mitochondrial DNA (mtDNA) encodes three COX subunits (I-III) and nuclear DNA (nDNA) encodes ten. In addition, ancillary proteins are required for the correct assembly and function of COX (refs 2, 3, 4, 5, 6). Although pathogenic mutations in mtDNA-encoded COX subunits have been described, no mutations in the nDNA-encoded subunits have been uncovered in any mendelian-inherited COX deficiency disorder. In yeast, two related COX assembly genes, SCO1 and SCO2 (for synthesis of cytochrome c oxidase), enable subunits I and II to be incorporated into the holoprotein. Here we have identified mutations in the human homologue, SCO2, in three unrelated infants with a newly recognized fatal cardioencephalomyopathy and COX deficiency. Immunohistochemical studies implied that the enzymatic deficiency, which was most severe in cardiac and skeletal muscle, was due to the loss of mtDNA-encoded COX subunits. The clinical phenotype caused by mutations in human SCO2 differs from that caused by mutations in SURF1, the only other known COX assembly gene associated with a human disease, Leigh syndrome.
We investigated the correlations of deletions of mitochondrial DNA in skeletal muscle with clinical manifestations of mitochondrial myopathies, a group of disorders defined either by biochemical abnormalities of mitochondria or by morphologic changes causing a ragged red appearance of the muscle fibers histochemically. We performed genomic Southern blot analysis of muscle mitochondrial DNA from 123 patients with different mitochondrial myopathies or encephalomyopathies. Deletions were found in the mitochondrial DNA of 32 patients, all of whom had progressive external ophthalmoplegia. Some patients had only ocular myopathy, whereas others had Kearns-Sayre syndrome, a multisystem disorder characterized by ophthalmoplegia, pigmentary retinopathy, heart block, and cerebellar ataxia. The deletions ranged in size from 1.3 to 7.6 kilobases and were mapped to different sites in the mitochondrial DNA, but an identical 4.9-kilobase deletion was found in the same location in 11 patients. Biochemical analysis showed decreased activities of NADH dehydrogenase, rotenone-sensitive NADH-cytochrome c reductase, succinate-cytochrome c reductase, and cytochrome c oxidase, four enzymes of the mitochondrial respiratory chain containing subunits encoded by mitochondrial DNA. We conclude that deletions of muscle mitochondrial DNA are associated with ophthalmoplegia and may result in impaired mitochondrial function. However, the precise relation between clinical and biochemical phenotypes and deletions remains to be defined.
Persistent mitochondrial hyperpolarization (MHP) and enhanced calcium fluxing underlie aberrant T cell activation and death pathway selection in systemic lupus erythematosus. Treatment with rapamycin, which effectively controls disease activity, normalizes CD3/CD28-induced calcium fluxing but fails to influence MHP, suggesting that altered calcium fluxing is downstream or independent of mitochondrial dysfunction. In this article, we show that activity of the mammalian target of rapamycin (mTOR), which is a sensor of the mitochondrial transmembrane potential, is increased in lupus T cells. S ystemic lupus erythematosus (SLE)3 is an autoimmune disease of unknown etiology characterized by T and B cell dysfunction and production of antinuclear Abs (1). Dysregulation of cell death is thought to play a key role in driving antinuclear Ab production, since the source of immunogenic nuclear material is necrotic or apoptotic cells in SLE (2). There is enhanced spontaneous apoptosis of circulating T cells in SLE, which has been linked to chronic lymphopenia (3) and compartmentalized release of autoantigens (4). Paradoxically, there is decreased activation-induced T cell death in SLE (5-7), which may contribute to persistence of autoreactive cells.The mitochondria play crucial roles in activation and death pathway selection in T lymphocytes (2). Lupus T cells exhibit mitochondrial dysfunction, which is characterized by the elevation of the mitochondrial transmembrane potential (⌬ m ) or persistent mitochondrial hyperpolarization (MHP) and consequential ATP depletion, resulting in decrease of activation-induced apoptosis and predisposition of T cells for necrosis (6). ATP depletion in lupus T cells was recently confirmed by Krishnan et al. (8). We proposed that increased release of necrotic materials from T cells could drive disease pathogenesis by activating macrophages and dendritic cells and enhancing their capacity to produce NO and IFN-␣ in SLE (2). Indeed, dendritic cells exposed to necrotic, but not apoptotic, cells induce lupus like-disease in MRL mice and accelerate the disease of MRL/lpr mice (9).Enhanced T cell activation-induced calcium fluxing has been identified as a central defect in abnormal activation and cytokine production by lupus T cells (10). Induction of MHP and mitochondrial biogenesis by NO augments cytoplasmic calcium levels and regenerates the enhanced rapid calcium signaling profile of lupus T cells (11). Dysregulation of signaling through the TCR has also been shown to be a critical determinant of abnormal calcium fluxing in SLE (12, 13). The TCR/CD3 -chain (TCR) expression is diminished in SLE T cells, and it is functionally replaced by the FcR type I ␥-chain (FcRI␥), a protein normally found in other cell types (14). TCR signaling through FcRI␥ and its adaptor protein Syk is associated with elevated calcium fluxing but only in the absence of TCR (12). It has been shown that forced expression of The costs of publication of this article were defrayed in part by the payment of page charges. This ...
Background Systemic lupus erythematosus (SLE) patients exhibit T-cell dysfunction which can be regulated through the mitochondrial transmembrane potential (Δψm) and mammalian target of rapamycin (mTOR) by glutathione. Therefore, the safety, tolerance, and efficacy of glutathione-precursor N-acetylcysteine (NAC) were examined in this randomized double-blind placebo-controlled study. Methods 36 SLE patients received daily placebo or 1.2 g, 2.4 g or 4.8 g of NAC. Disease activity was monthly evaluated by BILAG, SLEDAI and fatigue assessment scale (FAS) before, during, and after 3-month treatment. Δψm and mTOR were assessed by flow cytometry. 42 healthy subjects matched for patients’ age, gender, and ethnicity were studied as controls. Results NAC was tolerated by all patients up to 2.4 g/day while 33% of those receiving 4.8 g/day had reversible nausea. Placebo or 1.2 g/day NAC did not influence disease activity. Considered together, 2.4 g and 4.8 g NAC reduced: 1) SLEDAI after 1 month (p=0.0007), 2 months (p=0.0009), 3 months (p=0.0030) and 4 months (p=0.0046); 2) BILAG after 1 month (p=0.029) and 3 months (p=0.0009); and 3) FAS after 2 months (p=0.002) and 3 months (p=0.004). NAC increased Δψm (p=0.0001) in all T cells, it profoundly reduced mTOR activity (p=0.0001), enhanced apoptosis (p=0.0004) and reversed expansion of CD4−/CD8− T cells (1.35 ± 0.12-fold; p=0.008), stimulated Foxp3 expression in CD4+/CD25+ T cells (p=0.045), and reduced anti-DNA production (p=0.049). Conclusions This pilot study suggests that NAC safely improves lupus disease activity by blocking mTOR in T lymphocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.