In this study, the optimization and comparison of an internally cooled fiber [cold fiber with polydimethylsiloxane (PDMS) loading] and several commercial solid-phase microextraction (SPME) fibers for the extraction of volatile compounds from tropical fruits were performed. Automated headspace solid-phase microextraction (HS-SPME) using commercial fibers and an internally cooled SPME fiber device coupled to gas chromatography-mass spectrometry (GC-MS) was used to identify the volatile compounds of five tropical fruits. Pulps of yellow passion fruit (Passiflora edulis), cashew (Anacardium occidentale), tamarind (Tamarindus indica L.), acerola (Malphigia glabra L.), and guava (Psidium guajava L.) were sampled. The extraction conditions were optimized using two experimental designs (full factorial design and Doehlert matrix) to analyze the main and secondary effects. The volatile compounds tentatively identified included alcohols, esters, carbonyl compounds, and terpernes. It was found that the cold fiber was the most appropriate fiber for the purpose of extracting volatile compounds from the five fruit pulps studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.