Medicine has gone through several challenges to make it much more accurate and thus prolong the human being's life. A large part of this challenge is diseased, so early detection can help carry out treatment on time. There is a technology that allows detecting an abnormality within the body without using an invasive method. Ultrasound is a diagnostic test used to scan organs and tissues through sound waves. Although this technique has been widely used, the results are not desired because the images generated are not high resolution. On the other hand, X-rays are used because it presents an image with a much higher resolution than other techniques based on light waves or ultrasound; despite this, they are harmful to cells. In consequence of this problem, another method called molecular photoacoustic imaging has been implemented. This technique bridges the traditional depth limits of ballistic optical imaging and diffuse optical imaging's resolution limits, using the acoustic waves generated in response to laser light absorption, which has now shown potential for molecular imaging, allowing the visualization of biological processes in a non-invasive way. The purpose of this article is to give a critically scoped review of the physical, chemical, and biochemical characteristics of existing photoacoustic contrast agents, highlighting the pivotal applications and current challenges for molecular photoacoustic imaging.
Real-time vital signs monitoring, particularly heart rate, is essential in today's medical practice and research. Heart rate detection allows the doctor to monitor the patient's health status to provide immediate action against possible cardiovascular diseases. We present a possible alternative to traditional heart rate signal monitoring systems, a cardiac pulse system using low-cost piezoelectric signal identification. This system could benefit health care and develop continuous pulse waveform monitoring systems. This paper introduces a heartbeat per minute (BPM) cardiac pulse detection system based on a low-cost piezoelectric ceramic sensor (PCS). The PCS is placed under the wrist and adjusted with a silicone wristband to measure the pressure exerted by the radial artery on the sensor and thus obtain the patient's BPM. We propose a signal conditioning stage to reduce the sensor's noise when acquiring the data and make it suitable for real-time BPM visualization. As a comparison, we performed a statistical test to compare the low-cost PCS with types of traditional sensors, along with the help of 21 volunteers. Experimental results show that the data collected by the PCS, when used for heart rate detection, is highly accurate and close to traditional sensor measurements. Therefore, we conclude that the system efficiently monitors the cardiac pulse signal in BPM. Keywords: Heart rate; Piezoelectric, BPM; Pulse Detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.