Sardinians are “outliers” in the European genetic landscape and, according to paleogenomic nuclear data, the closest to early European Neolithic farmers. To learn more about their genetic ancestry, we analyzed 3,491 modern and 21 ancient mitogenomes from Sardinia. We observed that 78.4% of modern mitogenomes cluster into 89 haplogroups that most likely arose in situ. For each Sardinian-specific haplogroup (SSH), we also identified the upstream node in the phylogeny, from which non-Sardinian mitogenomes radiate. This provided minimum and maximum time estimates for the presence of each SSH on the island. In agreement with demographic evidence, almost all SSHs coalesce in the post-Nuragic, Nuragic and Neolithic-Copper Age periods. For some rare SSHs, however, we could not dismiss the possibility that they might have been on the island prior to the Neolithic, a scenario that would be in agreement with archeological evidence of a Mesolithic occupation of Sardinia.
Africa was the birth-place of Homo sapiens and has the earliest evidence for symbolic behaviour and complex technologies. The best-attested early flowering of these distinctive features was in a glacial refuge zone on the southern coast 100–70 ka, with fewer indications in eastern Africa until after 70 ka. Yet it was eastern Africa, not the south, that witnessed the first major demographic expansion, ~70–60 ka, which led to the peopling of the rest of the world. One possible explanation is that important cultural traits were transmitted from south to east at this time. Here we identify a mitochondrial signal of such a dispersal soon after ~70 ka – the only time in the last 200,000 years that humid climate conditions encompassed southern and tropical Africa. This dispersal immediately preceded the out-of-Africa expansions, potentially providing the trigger for these expansions by transmitting significant cultural elements from the southern African refuge.
Degradable synthetic hydrogels with site-selective immobilized laminin constitute attractive platforms for hNSC culture in 3D or for cell transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.