The main consequence of oxidative stress is the formation of DNA lesions, which can result in genomic instability and lead to cell death. Guanine is the base that is most susceptible to oxidation, due to its low redox potential, and 8-oxoguanine (8-oxoG) is the most common lesion. These characteristics make 8-oxoG a good cellular biomarker to indicate the extent of oxidative stress. If not repaired, 8-oxoG can pair with adenine and cause a G:C to T:A transversion. When 8-oxoG is inserted during DNA replication, it could generate double-strand breaks, which makes this lesion particularly deleterious. Trypanosoma cruzi needs to address various oxidative stress situations, such as the mammalian intracellular environment and the triatomine insect gut where it replicates. We focused on the MutT enzyme, which is responsible for removing 8-oxoG from the nucleotide pool. To investigate the importance of 8-oxoG during parasite infection of mammalian cells, we characterized the MutT gene in T. cruzi (TcMTH) and generated T. cruzi parasites heterologously expressing Escherichia coli MutT or overexpressing the TcMTH enzyme. In the epimastigote form, the recombinant and wild-type parasites displayed similar growth in normal conditions, but the MutT-expressing cells were more resistant to hydrogen peroxide treatment. The recombinant parasite also displayed significantly increased growth after 48 hours of infection in fibroblasts and macrophages when compared to wild-type cells, as well as increased parasitemia in Swiss mice. In addition, we demonstrated, using western blotting experiments, that MutT heterologous expression can influence the parasite antioxidant enzyme protein levels. These results indicate the importance of the 8-oxoG repair system for cell viability.
Introduction: Chagas disease (CD) prevention and control rely on studies of its distribution, characteristics of individuals affected and mode of transmission. CD data in Brazil are scarce; a retrospective analysis of the clinical characteristics of 80 patients treated at the Clinical Hospital of UNICAMP, Campinas, Brazil, was performed. Methods: Patient data records were analyzed. Results: Thirty percent of the patients probably got infected through vector-borne transmission, 65% came from endemic areas, a predominance of cardiac and cardiodigestive forms was found among males, and the cardiac form prevailed (51%). Conclusions: The results update the view on the epidemiology of CD in Campinas, Brazil.
Trypanosoma cruzi cytosolic (TcCPx) and mitochondrial tryparedoxin peroxidase (TcMPx) play a fundamental role in H(2)O(2) detoxification. Herein, mitochondrial bioenergetics was evaluated in cells that overexpressed TcCPx (CPx) and TcMPx (MPx) and in pTEX. In MPx, a higher expression was observed for TcCPx, and the same correlation was true for CPx. Differences in H(2)O(2) release among the overexpressing cells were detected when the mitochondrial respiratory chain was inhibited using antimycin A or thenoyltrifluoroacetone. MPx had higher O(2) consumption rates than pTEX and CPx, especially in the presence of oligomycin. In all of the cells, the mitochondrial membrane potential and the ATP levels were similar. Because of the mild uncoupling that was observed in MPx, the presence or induction of a proton transporter in the mitochondrial membrane is suggested when TcMPx is expressed at higher levels. Our results show a possible interplay between the cytosolic and mitochondrial antioxidant systems in a trypanosomatid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.