Magnetic reconnection is a fundamental plasma process involving an exchange of magnetic energy to plasma kinetic energy through changes in the magnetic field topology. In many astrophysical plasmas magnetic reconnection plays a key role in the release of large amounts of energy [1], although making direct measurements is challenging in the case of high-energy astrophysical systems such as pulsar wind emissions [2], gamma-ray bursts [4], and jets from active galactic nuclei [5]. Therefore, laboratory studies of magnetic reconnection provide an important platform for testing theories and characterising different regimes. Here we present experimental measurements as well as numerical modeling of relativistic magnetic reconnection driven by short-pulse, high-intensity lasers that produce relativistic plasma along with extremely strong magnetic fields. Evidence of magnetic reconnection was identified by the plasma's X-ray emission patterns, changes to the electron energy spectrum, and by measuring the time over which reconnection occurs. Accessing these relativistic conditions in the laboratory allows for further investigation that may provide insight into unresolved areas in space and astro-physics.
Here we devise an approach to model error and its propagation. Without approximations, we define the uncertainty of a measurement as its maximum possible error (maper). Thus, we propose and solve analytically two optimization problems. The one designed to determine the uncertainty of a measurement, the other specifically designed to optimize the accuracy of a RFID location system. The usefulness of this general approach is shown by applying it to the particular instance of estimating the coordinates of a person in real-time using RFID devices. This way, exact formulae to evaluate the quality of this measurement are mathematically deduced, which is useful, for example, to predict whether an inexpensive RFID location technology can meet a desired quality standard or not. The second optimization problem proposed here defines an optimal range (orange) for the RFID devices employed. Again, analytically, its exact formulae were derived. We propose an approach to distribute RFID tags for a positioning system based solely on RFID technology. In the light of the formulae, its quality is good enough as to locate emergency phone calls in real time. We found that key to an optimal performance is the range used and the distance between consecutive tags.Electronic supplementary materialThe online version of this article (doi:10.1186/s40064-015-1084-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.