Previous analyses of relations, divergence times, and diversification patterns among extant mammalian families have relied on supertree methods and local molecular clocks. We constructed a molecular supermatrix for mammalian families and analyzed these data with likelihood-based methods and relaxed molecular clocks. Phylogenetic analyses resulted in a robust phylogeny with better resolution than phylogenies from supertree methods. Relaxed clock analyses support the long-fuse model of diversification and highlight the importance of including multiple fossil calibrations that are spread across the tree. Molecular time trees and diversification analyses suggest important roles for the Cretaceous Terrestrial Revolution and Cretaceous-Paleogene (KPg) mass extinction in opening up ecospace that promoted interordinal and intraordinal diversification, respectively. By contrast, diversification analyses provide no support for the hypothesis concerning the delayed rise of present-day mammals during the Eocene Period.
The precise hierarchy of ancient divergence events that led to the present assemblage of modern placental mammals has been an area of controversy among morphologists, palaeontologists and molecular evolutionists. Here we address the potential weaknesses of limited character and taxon sampling in a comprehensive molecular phylogenetic analysis of 64 species sampled across all extant orders of placental mammals. We examined sequence variation in 18 homologous gene segments (including nearly 10,000 base pairs) that were selected for maximal phylogenetic informativeness in resolving the hierarchy of early mammalian divergence. Phylogenetic analyses identify four primary superordinal clades: (I) Afrotheria (elephants, manatees, hyraxes, tenrecs, aardvark and elephant shrews); (II) Xenarthra (sloths, anteaters and armadillos); (III) Glires (rodents and lagomorphs), as a sister taxon to primates, flying lemurs and tree shrews; and (IV) the remaining orders of placental mammals (cetaceans, artiodactyls, perissodactyls, carnivores, pangolins, bats and core insectivores). Our results provide new insight into the pattern of the early placental mammal radiation.
Molecular phylogenetic studies have resolved placental mammals into four major groups, but have not established the full hierarchy of interordinal relationships, including the position of the root. The latter is critical for understanding the early biogeographic history of placentals. We investigated placental phylogeny using Bayesian and maximum-likelihood methods and a 16.4-kilobase molecular data set. Interordinal relationships are almost entirely resolved. The basal split is between Afrotheria and other placentals, at about 103 million years, and may be accounted for by the separation of South America and Africa in the Cretaceous. Crown-group Eutheria may have their most recent common ancestry in the Southern Hemisphere (Gondwana).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.