Low Power Wide Area Networks (LPWAN) enable a growing number of Internet-of-Things (IoT) applications with large geographical coverage, low bit-rate, and long lifetime requirements. LoRa (Long Range) is a well-known LPWAN technology that uses a proprietary Chirp Spread Spectrum (CSS) physical layer, while the upper layers are defined by an open standard—LoRaWAN. In this paper, we propose a simple yet effective method to improve the Quality-of-Service (QoS) of LoRaWAN networks by fine-tuning specific radio parameters. Through a Mixed Integer Linear Programming (MILP) problem formulation, we find optimal settings for the Spreading Factor (SF) and Carrier Frequency (CF) radio parameters, considering the network traffic specifications as a whole, to improve the Data Extraction Rate (DER) and to reduce the packet collision rate and the energy consumption in LoRa networks. The effectiveness of the optimization procedure is demonstrated by simulations, using LoRaSim for different network scales. In relation to the traditional LoRa radio parameter assignment policies, our solution leads to an average increase of 6% in DER, and a number of collisions 13 times smaller. In comparison to networks with dynamic radio parameter assignment policies, there is an increase of 5%, 2.8%, and 2% of DER, and a number of collisions 11, 7.8 and 2.5 times smaller than equal-distribution, Tiurlikova’s (SOTA), and random distribution, respectively. Regarding the network energy consumption metric, the proposed optimization obtained an average consumption similar to Tiurlikova’s, and 2.8 times lower than the equal-distribution and random dynamic allocation policies. Furthermore, we approach the practical aspects of how to implement and integrate the optimization mechanism proposed in LoRa, guaranteeing backward compatibility with the standard protocol.
Low Power Wide Area Networks (LPWAN) enable a growing number of Internet-of-Things (IoT) applications with large geographical coverage, low bit-rate, and long lifetime requirements. LoRa (Long Range) is a well-known LPWAN technology that uses a proprietary Chirp Spread Spectrum (CSS) physical layer, while the upper layers are defined by an open standard - LoRaWAN. In this paper, we propose a simple yet effective method to improve the Quality-of-Service (QoS) of LoRa networks by fine-tuning specific radio parameters. Through a Mixed Integer Linear Programming (MILP) problem formulation, we find optimal settings for the Spreading Factor (SF) and Carrier Frequency (CF) radio parameters, considering the network traffic specifications as a whole, to improve the Data Extraction Rate (DER) and to reduce the packet collision rate and the energy consumption in LoRa networks. The effectiveness of the optimization procedure is demonstrated by simulations, using LoRaSim for different network scales. In relation to the traditional LoRa radio parameter assignment policies, our solution leads to an average increase of 6% in DER, and a number of collisions 13 times smaller. In comparison to networks with dynamic radio parameter assignment policies, there is an increase of 5%, 2.8%, and 2% of DER, and a number of collisions 11, 7.8 and 2.5 times smaller than equal-distribution, Tiurlikova's (SoTa), and random distribution, respectively. Regarding the network energy consumption metric, the proposed optimization obtained an average consumption similar to Tiurlikova's, and 2.8 times lower than the equal-distribution and random dynamic allocation policies. Furthermore, we approach the practical aspects of how to implement and integrate the optimization mechanism proposed in LoRa, guaranteeing backward compatibility with the standard protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.