Abstract:A new Fourier Series Learning Controller (FSLC) for velocity control on a Permanent Magnet Synchronous Motor (PMSM) is proposed and implemented. An analysis of the error convergence for the FSLC is presented, and the update law for the Fourier series coefficients is specified. The field-oriented control method is used as a basic element to implement three different controllers for a PMSM. The performance of the FSLC is compared with two control methods, a classical PI (Proportional Integral) controller and an artificial neural network controller. The periodic nature of torque ripple in PMSMs is considered as a periodic disturbance, which must be compensated by the controller. With the FSLC implementation, a substantial reduction of the velocity ripple is obtained. Furthermore, a higher speed of learning is achieved with the FSLC in comparison with the artificial neural network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.