Breast tumors are usually classified according to their response to estrogens as hormone-dependent or -independent. In this work, we investigated the role of the proinflammatory cytokine TNF-a on the estrogen-receptor-positive T47D breast ductal tumor cells. We have found that TNF-a exerts a mitogenic effect, inducing cyclin D1 expression and activation of the transcription factor NF-jB. Importantly, activation of NF-jB was required for estrogen-induced proliferation and cyclin D1 expression. TNF-a enhanced the estrogen response by increasing the levels and availability of NF-jB. Chromatin immunoprecipitation analysis suggested that the action of estrogens is mediated by a protein complex that contains the activated estrogen receptor, the nuclear receptor coactivator RAC3 and a member of the NF-jB family. Finally, our results demonstrate that activation of this transcription factor could be one of the key signals for estrogen-mediated response.
Colorectal cancer (CRC) is the third most common malignant neoplasm worldwide. The objective of this study was to examine whether carnosic acid (CA), the main antioxidant compound of Rosmarinus officinalis L., would inhibit the cell viability of three CRC cell lines: Caco-2, HT29 and LoVo in a dose-dependent manner, with IC50 values in the range of 24–96 μM. CA induced cell death by apoptosis in Caco-2 line after 24 h of treatment and inhibited cell adhesion and migration, possibly by reducing the activity of secreted proteases such as urokinase plasminogen activator (uPA) and metalloproteinases (MMPs). These effects may be associated through a mechanism involving the inhibition of the COX-2 pathway, because we have determined that CA downregulates the expression of COX-2 in Caco-2 cells at both the mRNA and protein levels. Therefore, CA modulates different targets involved in the development of CRC. These findings indicate that carnosic acid may have anticancer activity and may be useful as a novel chemotherapeutic agent.
Cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane regulator (CFTR) chloride channel, is associated in the respiratory system with the accumulation of mucus and impaired lung function. The role of the CFTR channel in the regulation of the intracellular pathways that determine the overexpression of mucin genes is unknown. Using differential display, we have observed the differential expression of several mRNAs that may correspond to putative CFTR-dependent genes. One of these mRNAs was further characterized, and it corresponds to the tyrosine kinase c-Src. Additional results suggest that c-Src is a central element in the pathway connecting the CFTR channel with MUC1 overexpression and that the overexpression of mucins is a primary response to CFTR malfunction in cystic fibrosis, which occurs even in the absence of bacterial infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.