A systematic rational search for newly designed melatonin derivatives, was performed using a computer-assisted protocol. A total of 116 derivatives were generated by adding functional groups (i.e., -OH, -NH2, -SH and -COOH) to the melatonin structure. A selection score (SS) was built to sample the search space, simultaneously considering ADME (absorption, distribution, metabolism, excretion) properties, toxicity and manufacturability (i.e., synthetic accessibility). The search characterized the whole set of designed melatonin derivatives and allowed the selection of a reduced subset of 20 melatonin derivatives that are expected to be the most promising, regarding drug-like behavior. For this subset, several reactivity indices were estimated, as well as their pKa values. According to the gathered data, 5 melatonin derivatives have been identified as the most likely candidates to act as chemical antioxidant (directly scavenging free radicals, by electron transfer and/or H transfer). All of them are predicted to be better for that purpose than melatonin itself or trolox (water soluble vitamin E analog). The findings from this work are expected to motivate further investigations on these molecules, using both theoretical and experimental approaches.
p-Coumaric acid is a ubiquitous molecule, widely distributed in the vegetal kingdom and often found in the human diet. A systematic, rational search for new p-coumaric acid derivatives was performed...
A systematic, rational search for chalcone derivatives with multifunctional behavior has been carried out, with the support of a computer-assisted protocol (CADMA-Chem). A total of 568 derivatives were constructed by incorporating functional groups into the chalcone structure. Selection scores were calculated from ADME properties, toxicity, and manufacturability descriptors. They were used to select a subset of molecules (23) with the best drug-like behavior. Reactivity indices were calculated for this subset. They were chosen to account for electron and hydrogen atom donating capabilities, which are key processes for antioxidant activity. The indexes showed that four chalcone derivatives (dCHA-279, dCHA-568, dCHA-553, and dCHA-283) are better electron and H donors than the parent molecule and some reference antioxidants (Trolox, ascorbic acid, and α-tocopherol). In addition, based on molecular docking, they are predicted to act as catechol-O-methyltransferase (COMT), acetylcholinesterase (AChE), and monoamine oxidase B (MAO-B) inhibitors. Therefore, these four molecules are proposed as promising candidates to act as multifunctional antioxidants with neuroprotective effects.
A computational protocol aimed to design new antioxidants with versatile behavior is presented. It is called Computer-Assisted Design of Multifunctional Antioxidants and is based on chemical properties (CADMA-Chem). The desired multi-functionality consists of in different methods of antioxidant protection combined with neuroprotection, although the protocol can also be used to pursue other health benefits. The dM38 melatonin derivative is used as a study case to illustrate the protocol in detail. This was found to be a highly promising candidate for the treatment of neurodegeneration, in particular Parkinson’s and Alzheimer’s diseases. This also has the desired properties of an oral-drug, which is significantly better than Trolox for scavenging free radicals, and has chelates redox metals, prevents the ●OH production, via Fenton-like reactions, repairs oxidative damage in biomolecules (lipids, proteins, and DNA), and acts as a polygenic neuroprotector by inhibiting catechol-O-methyl transferase (COMT), acetylcholinesterase (AChE) and monoamine oxidase B (MAOB). To the best of our best knowledge, CADMA-Chem is currently the only protocol that simultaneously involves the analyses of drug-like behavior, toxicity, manufacturability, versatile antioxidant protection, and receptor–ligand binding affinities. It is expected to provide a starting point that helps to accelerate the discovery of oral drugs with the potential to prevent, or slow down, multifactorial human health disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.