The study of electrical impedance applied to food has become a method with great potential for use in the food industry, which allows the monitoring and control of quality processes in a safe and non-invasive way. Recent research has shown that this technique can be an alternative method to determine the floral origin of the honey bee (Apis mellifera L.) and acquire information on chemical and physical properties such as conductivity, ash content and acidity. In this work, the electrical impedance of six monofloral honey samples from diverse origins and one commercial multi-floral honey were measured using a low-cost impedance meter, obtaining 101 samples (reactance (X) versus resistance (R)), with a frequency sweep between 1 Hz and 25 MHz in all the honeys analyzed. This shows that it is possible, by using a multilayer neural network trained from these data, to classify with 100% accuracy between these honeys and, thereby, quickly and easily determine the floral origin of the honey. This is without the need to use the chemical data or equivalent electrical models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.