The inverse ECG problem is set as a boundary data completion for the Laplace equation: at each time the potential is measured on the torso and its normal derivative is null. One aims at reconstructing the potential on the heart. A new regularization scheme is applied to obtain an optimal regularization strategy for the boundary data completion problem. We consider the ℝn+1 domain Ω. The piecewise regular boundary of Ω is defined as the union ∂Ω = Γ1 ∪ Γ0 ∪ Σ, where Γ1 and Γ0 are disjoint, regular, and n-dimensional surfaces. Cauchy boundary data is given in Γ0, and null Dirichlet data in Σ, while no data is given in Γ1. This scheme is based on two concepts: admissible output data for an ill-posed inverse problem, and the conditionally well-posed approach of an inverse problem. An admissible data is the Cauchy data in Γ0 corresponding to an harmonic function in C2(Ω) ∩H1(Ω). The methodology roughly consists of first characterizing the admissible Cauchy data, then finding the minimum distance projection in the L2-norm from the measured Cauchy data to the subset of admissible data characterized by given a priori information, and finally solving the Cauchy problem with the aforementioned projection instead of the original measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.