: The Fungal infections are diseases that are considered neglected although their infection rates have increased worldwide in the last decades. Thus, since the antifungal arsenal is restricted and many strains have shown resistance new therapeutic alternatives are necessary. Nanoparticles are considered important alternatives to promote drug delivery. In this sense, the objective of the present study was to evaluate the contributions of newly developed nanoparticles to the treatment of fungal infections. Studies have shown that nanoparticles generally improve the biopharmaceutical and pharmacokinetic characteristics of antifungals, which is reflected in a greater pharmacodynamic potential and lower toxicity, as well as the possibility of prolonged action. It also offers the proposition of new routes of administration. Nanotechnology is known to contribute to a new drug delivery system, not only for the control of infectious diseases, but for various other diseases as well. In recent years, several studies have emphasized its application in infectious diseases, presenting better alternatives for the treatment of fungal infections.
Apocynin is a phenolic compound isolated from the plant Picrorhiza kurroa Royle ex Benth. Such a compound has been extensively investigated for its therapeutic potential in diseases involving inflammatory processes or oxidative stress due to its ability to inhibit the NADPH oxidase multienzyme complex. This complex consists of two transmembrane proteins (Nox2 and p22phox) and four cytosolic regulatory proteins (p67phox, p47phox, p40phox, and GTPase-Rac) and their activation occurs after the stimulation of phagocytic cells by the mediation of the enzyme myeloperoxidase (MPO). NADPH oxidase is the only enzyme complex that is intended for the production of superoxide anion that is precursor of highly oxidizing substances classified as reactive oxygen species (ROS). NADPH oxidase is an enzyme complex that produces superoxide anion from molecular oxygen. Ta the same time, the superoxide anion is a precursor to reactive oxygen species (ROS) catalyzed by enzymes.These oxidative species, when in excess, can induce burst, causing irreparable tissue damage. They can act by modifying the redox state of DNA, protein or lipid molecules, playing a central role in the development of chronic pathologies and various health complications. One can cite vascular problems, hyperglycemia, diabetes, hypertension, Alzheimer's disease, and cancer, among others. Apocynin, previously activated by MPO, blocks the enzyme complex and prevents the formation of these oxidative species. Therefore, the central biological function of compound is to modulate the action of NADPH oxidase, promoting a positive effect in the prevention/remediation of inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.