Parathyroid hormone (PTH) has an important role in the maintenance of serum calcium levels. It activates renal 1α-hydroxylase and increases the synthesis of the active form of vitamin D (1,25[OH]2D3). PTH promotes calcium release from the bone and enhances tubular calcium resorption through direct action on these sites. Hallmarks of secondary hyperparathyroidism associated with chronic kidney disease (CKD) include increase in serum fibroblast growth factor 23 (FGF-23), reduction in renal 1,25[OH]2D3 production with a decline in its serum levels, decrease in intestinal calcium absorption, and, at later stages, hyperphosphatemia and high levels of PTH. In this paper, we aim to critically discuss severe CKD-related hyperparathyroidism, in which PTH, through calcium-dependent and -independent mechanisms, leads to harmful effects and manifestations of the uremic syndrome, such as bone loss, skin and soft tissue calcification, cardiomyopathy, immunodeficiency, impairment of erythropoiesis, increase of energy expenditure, and muscle weakness.
Several factors contribute to renal-function decline in CKD patients, and the role of phosphate content in the diet is still a matter of debate. This study aims to analyze the mechanism by which phosphate, independent of protein, is associated with the progression of CKD. Adult Munich-Wistar rats were submitted to 5/6 nephrectomy (Nx), fed with a low-protein diet, and divided into two groups. Only phosphate content (low phosphate, LoP, 0.2%; high phosphate, HiP, 0.95%) differentiated diets. After sixty days, biochemical parameters and kidney histology were analyzed. The HiP group presented worse renal function, with higher levels of PTH, FGF-23, and fractional excretion of phosphate. In the histological analysis of the kidney tissue, they also showed a higher percentage of interstitial fibrosis, expression of α-actin, PCNA, and renal infiltration by macrophages. The LoP group presented higher expression of beclin-1 in renal tubule cells, a marker of autophagic flux, when compared to the HiP group. Our findings highlight the action of phosphate in the induction of kidney interstitial inflammation and fibrosis, contributing to the progression of renal disease. A possible effect of phosphate on the dysregulation of the renal cell autophagy mechanism needs further investigation with clinical studies.
Mineral and bone metabolism disorders are relatively common among patients with end-stage renal disease on maintenance hemodialysis. Corneal and conjunctival calcification is the main extravascular site for calcification. Recently, this form of calcification has been linked to vascular calcification. Secondary hyperparathyroidism can lead to high levels of calcium and phosphorus and increase the risk of calcification. Here, we report a case of a 38-year-old female with severe hyperparathyroidism who underwent eye examination before and after parathyroidectomy. Anterior segment optical coherence tomography showed an improvement in the number and size of ocular calcifications 6 months after surgery. This case calls attention to the importance of eye examination in patients on dialysis and brings the possibility of recovery of calcification in a short-term follow-up.
Purpose of reviewIn patients with chronic kidney disease (CKD), hyperphosphatemia is associated with several adverse outcomes, including bone fragility and progression of kidney and cardiovascular disease. However, there is a knowledge gap regarding phosphate balance in CKD. This review explores its current state, depending on the stage of CKD, dialysis modalities, and the influence of kidney transplantation.Recent findingsAdequate phosphate control is one of the goals of treatment for CKD-mineral and bone disorder. However, ongoing studies are challenging the benefits of phosphate-lowering treatment. Nevertheless, the current therapy is based on dietary restriction, phosphate binders, and optimal removal by dialysis. In the face of limited adherence, due to the high pill burden, adjuvant options are under investigation. The recent discovery that intestinal absorption of phosphate is mostly paracellular when the intraluminal concentration is adequate might help explain why phosphate is still well absorbed in CKD, despite the lower levels of calcitriol.SummaryFuture studies could confirm the benefits of phosphate control. Greater understanding of the complex distribution of phosphate among the body compartments will help us define a better therapeutic strategy in patients with CKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.