Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors.
H-FIRE can be used to induce rapid, predictable ablations in hepatic tissue without the need for intraoperative paralytics or cardiac synchronization. These advantages may overcome limitations that restrict currently available IRE technology for hepatic ablations.
High-frequency irreversible electroporation is a nonthermal method of tissue ablation
that uses bursts of 0.5- to 2.0-microsecond bipolar electric pulses to permeabilize cell
membranes and induce cell death. High-frequency irreversible electroporation has potential
advantages for use in neurosurgery, including the ability to deliver pulses without
inducing muscle contraction, inherent selectivity against malignant cells, and the
capability of simultaneously opening the blood–brain barrier surrounding regions of
ablation. Our objective was to determine whether high-frequency irreversible
electroporation pulses capable of tumor ablation could be delivered to dogs with
intracranial meningiomas. Three dogs with intracranial meningiomas were treated.
Patient-specific treatment plans were generated using magnetic resonance imaging-based
tissue segmentation, volumetric meshing, and finite element modeling. Following tumor
biopsy, high-frequency irreversible electroporation pulses were stereotactically delivered
in situ followed by tumor resection and morphologic and volumetric
assessments of ablations. Clinical evaluations of treatment included pre- and
posttreatment clinical, laboratory, and magnetic resonance imaging examinations and
adverse event monitoring for 2 weeks posttreatment. High-frequency irreversible
electroporation pulses were administered successfully in all patients. No adverse events
directly attributable to high-frequency irreversible electroporation were observed.
Individual ablations resulted in volumes of tumor necrosis ranging from 0.25 to 1.29
cm3. In one dog, nonuniform ablations were observed, with viable tumor cells
remaining around foci of intratumoral mineralization. In conclusion, high-frequency
irreversible electroporation pulses can be delivered to brain tumors, including areas
adjacent to critical vasculature, and are capable of producing clinically relevant volumes
of tumor ablation. Mineralization may complicate achievement of complete tumor
ablation.
Many approaches for studying the transmembrane potential (TMP) induced during the treatment of biological cells with pulsed electric fields have been reported. From the simple analytical models to more complex numerical models requiring significant computational resources, a gamut of methods have been used to recapitulate multicellular environments in silico. Cells have been modeled as simple shapes in two dimensions as well as more complex geometries attempting to replicate realistic cell shapes. In this study, we describe a method for extracting realistic cell morphologies from fluorescence microscopy images to generate the piecewise continuous mesh used to develop a finite element model in two dimensions. The preelectroporation TMP induced in tightly packed cells is analyzed for two sets of pulse parameters inspired by clinical irreversible electroporation treatments. We show that high-frequency bipolar pulse trains are better, and more homogeneously raise the TMP of tightly packed cells to a simulated electroporation threshold than conventional irreversible electroporation pulse trains, at the expense of larger applied potentials. Our results demonstrate the viability of our method and emphasize the importance of considering multicellular effects in the numerical models used for studying the response of biological tissues exposed to electric fields.
The proposed physics-based pre-treatment plan through finite element analysis and system for actively monitoring resistance changes can be paired to significantly reduce ablation times and risk of thermal effects during IRE procedures for LAPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.