An electrocardiogram (ECG) measures the electric activity of the heart and has been widely used for detecting heart diseases due to its simplicity and non-invasive nature. By analyzing the electrical signal of each heartbeat, i.e., the combination of action impulse waveforms produced by different specialized cardiac tissues found in the heart, it is possible to detect some of its abnormalities. In the last decades, several works were developed to produce automatic ECG-based heartbeat classification methods. In this work, we survey the current state-of-the-art methods of ECG-based automated abnormalities heartbeat classification by presenting the ECG signal preprocessing, the heartbeat segmentation techniques, the feature description methods and the learning algorithms used. In addition, we describe some of the databases used for evaluation of methods indicated by a well-known standard developed by the Association for the Advancement of Medical Instrumentation (AAMI) and described in ANSI/AAMI EC57:1998/(R)2008 (ANSI/AAMI, 2008). Finally, we discuss limitations and drawbacks of the methods in the literature presenting concluding remarks and future challenges, and also we propose an evaluation process workflow to guide authors in future works.
Early detection and diagnosis are critical factors to control the COVID-19 spreading. A number of deep learning-based methodologies have been recently proposed for COVID-19 screening in CT scans as a tool to automate and help with the diagnosis. These approaches, however, suffer from at least one of the following problems: (i) they treat each CT scan slice independently and (ii) the methods are trained and tested with sets of images from the same dataset. Treating the slices independently means that the same patient may appear in the training and test sets at the same time which may produce misleading results. It also raises the question of whether the scans from the same patient should be evaluated as a group or not. Moreover, using a single dataset raises concerns about the generalization of the methods. Different datasets tend to present images of varying quality which may come from different types of CT machines reflecting the conditions of the countries and cities from where they come from. In order to address these two problems, in this work, we propose an Efficient Deep Learning Technique for the screening of COVID-19 with a voting-based approach. In this approach, the images from a given patient are classified as group in a voting system. The approach is tested in the two biggest datasets of COVID-19 CT analysis with a patient-based split. A cross dataset study is also presented to assess the robustness of the models in a more realistic scenario in which data comes from different distributions. The cross-dataset analysis has shown that the generalization power of deep learning models is far from acceptable for the task since accuracy drops from 87.68% to 56.16% on the best evaluation scenario. These results highlighted that the methods that aim at COVID-19 detection in CT-images have to improve significantly to be considered as a clinical option and larger and more diverse datasets are needed to evaluate the methods in a realistic scenario.
Purpose Confronting the pandemic of COVID-19 is nowadays one of the most prominent challenges of the human species. A key factor in slowing down the virus propagation is the rapid diagnosis and isolation of infected patients. The standard method for COVID-19 identification, the Reverse transcription polymerase chain reaction method, is time-consuming and in short supply due to the pandemic. Thus, researchers have been looking for alternative screening methods, and deep learning applied to chest X-rays of patients has been showing promising results. Despite their success, the computational cost of these methods remains high, which imposes difficulties to their accessibility and availability. Thus, the main goal of this work is to propose an accurate yet efficient method in terms of memory and processing time for the problem of COVID-19 screening in chest X-rays. Methods To achieve the defined objective, we propose a new family of models based on the EfficientNet family of deep artificial neural networks which are known for their high accuracy and low footprints. We also exploit the underlying taxonomy of the problem with a hierarchical classifier. A dataset of 13,569 X-ray images divided into healthy, non-COVID-19 pneumonia, and COVID-19 patients is used to train the proposed approaches and other 5 competing architectures. We also propose a cross-dataset evaluation with a second dataset to evaluate the method generalization power. Results The results show that the proposed approach was able to produce a high-quality model, with an overall accuracy of 93.9%, COVID-19 sensitivity of 96.8%, and positive prediction of 100% while having from 5 to 30 times fewer parameters than the other tested architectures. Larger and more heterogeneous databases are still needed for validation before claiming that deep learning can assist physicians in the task of detecting COVID-19 in X-ray images, since the cross-dataset evaluation shows that even state-of-the-art models suffer from a lack of generalization power. Conclusions We believe the reported figures represent state-of-the-art results, both in terms of efficiency and effectiveness, for the COVIDx database, a database of 13,800 X-ray images, 183 of which are from patients affected by COVID-19. The current proposal is a promising candidate for embedding in medical equipment or even physicians' mobile phones.
Classifying arrhythmias can be a tough task for a human being and automating this task is highly desirable. Nevertheless fully automatic arrhythmia classification through Electrocardiogram (ECG) signals is a challenging task when the inter-patient paradigm is considered. For the inter-patient paradigm, classifiers are evaluated on signals of unknown subjects, resembling the real world scenario. In this work, we explore a novel ECG representation based on vectorcardiogram (VCG), called temporal vectorcardiogram (TVCG), along with a complex network for feature extraction. We also fine-tune the SVM classifier and perform feature selection with a particle swarm optimization (PSO) algorithm. Results for the inter-patient paradigm show that the proposed method achieves the results comparable to state-of-the-art in MIT-BIH database (53% of Positive predictive (+P) for the Supraventricular ectopic beat (S) class and 87.3% of Sensitivity (Se) for the Ventricular ectopic beat (V) class) that TVCG is a richer representation of the heartbeat and that it could be useful for problems involving the cardiac signal and pattern recognition.
An important tool for the heart disease diagnosis is the analysis of electrocardiogram (ECG) signals, since the non-invasive nature and simplicity of the ECG exam. According to the application, ECG data analysis consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to detect cardiac arrhythmias (i.e., cardiac rhythm abnormalities). Aiming to made a fast and accurate cardiac arrhythmia signal classification process, we apply and analyze a recent and robust supervised graphbased pattern recognition technique, the optimum-path forest (OPF) classifier. To the best of our knowledge, it is the first time that OPF classifier is used to the ECG heartbeat signal classification task. We then compare the performance (in terms of training and testing time, accuracy, specificity, and sensitivity) of the OPF classifier to the ones of other three well-known expert system classifiers, i.e., support vector machine (SVM), Bayesian and multilayer artificial neural network (MLP), using features extracted from six main approaches considered in literature for ECG arrhythmia analysis. In our experiments, we use the MIT-BIH Arrhythmia Database and the evaluation protocol recommended by The Association for the Advancement of Medical Instrumentation. A discussion on the obtained results shows that OPF classifier presents a robust performance, i.e., there is no need for parameter setup, as well as a high accuracy at an extremely low computational cost. Moreover, in average, the OPF classifier yielded greater performance than the MLP and SVM classifiers in terms of classification time and accuracy, and to produce quite similar performance to the Bayesian classifier, showing to be a promising technique for ECG signal analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.