Accurate mapping is a main challenge for endangered small-sized terrestrial species. Freely available spatio-temporal data at high resolution from multispectral satellite offer excellent opportunities for improving predictive distribution models of such species based on fine-scale habitat features, thus making it easier to achieve comprehensive biodiversity conservation goals. However, there are still few examples showing the utility of remote-sensing-based products in mapping microhabitat suitability for small species of conservation concern. Here, we address this issue using Sentinel-2 sensor-derived habitat variables, used in combination with more commonly used explanatory variables (e.g., topography), to predict the distribution of the endangered Cabrera vole (Microtus cabrerae) in agrosilvopastorial systems. Based on vole surveys conducted in two different seasons over a~176,000 ha landscape in Southern Portugal, we assessed the significance of each predictor in explaining Cabrera vole occurrence using the Boruta algorithm, a novel Random forest variant for dealing with high dimensionality of explanatory variables. Overall, results showed a strong contribution of Sentinel-2-derived variables for predicting microhabitat suitability of Cabrera voles. In particular, we found that photosynthetic activity (NDI45), specific spectral signal (SWIR1), and landscape heterogeneity (Rao's Q) were good proxies of Cabrera voles' microhabitat, mostly during temporally greener and wetter conditions. In addition to remote-sensing-based variables, the presence of road verges was also an important driver of voles' distribution, highlighting their potential role as refuges and/or corridors. Overall, our study supports the use of remote-sensing data to predict microhabitat suitability for endangered small-sized species in marginal areas that potentially hold most of the biodiversity found in human-dominated landscapes. We believe our approach can be widely applied to other species, for which detailed habitat mapping over large spatial extents is difficult to obtain using traditional descriptors. This would certainly contribute to improving conservation planning, thereby contributing to global conservation efforts in landscapes that are managed for multiple purposes.
Anthropogenic infrastructures and land-use changes are major threats to animal movements across heterogeneous landscapes. Yet, the behavioural consequences of such constraints remain poorly understood. We investigated the relationship between the behaviour of the Common genet (Genetta genetta) and road proximity, within a dominant mixed forest-agricultural landscape in southern Portugal, fragmented by roads. Specifically, we aimed to: (i) identify and characterise the behavioural states displayed by genets and related movement patterns; and (ii) understand how behavioural states are influenced by proximity to main paved roads and landscape features. We used a multivariate Hidden Markov Model (HMM) to characterise the fine-scale movements (10-min fixes GPS) of seven genets tracked during 187 nights (mean 27 days per individual) during the period 2016–2019, using distance to major paved roads and landscape features as predictors. Our findings indicated that genet’s movement patterns were composed of three basic behavioural states, classified as “resting” (short step-lengths [mean = 10.6 m] and highly tortuous), “foraging” (intermediate step-lengths [mean = 46.1 m] and with a wide range in turning angle) and “travelling” (longer step-lengths [mean = 113.7 m] and mainly linear movements). Within the genet’s main activity-period (17.00 h-08.00 h), the movement model predicts that genets spend 36.7% of their time travelling, 35.4% foraging and 28.0% resting. The probability of genets displaying the travelling state was highest in areas far away from roads (> 500 m), whereas foraging and resting states were more likely in areas relatively close to roads (up to 500 m). Landscape features also had a pronounced effect on behaviour state occurrence. More specifically, travelling was most likely to occur in areas with lower forest edge density and close to riparian habitats, while foraging was more likely to occur in areas with higher forest edge density and far away from riparian habitats. The results suggest that, although roads represent a behavioural barrier to the movement of genets, they also take advantage of road proximity as foraging areas. Our study demonstrates that the HMM approach is useful for disentangling movement behaviour and understanding how animals respond to roadsides and fragmented habitats. We emphasise that road-engaged stakeholders need to consider movement behaviour of genets when targeting management practices to maximise road permeability for wildlife.
Roads are among the most widespread signs of man’s presence around the globe. From simple low traffic trails to wide and highly used highways, roads have a wide array of effects on wildlife. In the present study, we tested how habitat reduction by roads may affect the space use and movement patterns of the Cabrera vole (Microtus cabrerae), a near-threatened Iberian endemism, often living on road verges. A total of 16 voles were successfully radio-tracked in two habitat patches with different size and proximity to roads. Results showed that individuals from the smaller patch (Verge patch) had smaller and less complex home-ranges than those from the larger patch (Meadow patch). Movement patterns were significantly influenced by the day period but only in individuals from the Verge patch. There was evidence of a barrier effect in both habitat patches, being this effect much more noticeable in the verge population. Overall, this study shows that space use and movement patterns of Cabrera voles near roads may be affected by the degree of habitat reduction imposed by these infrastructures. This suggests that species space use and movement patterns at fine-scale should be accounted for in road planning, even for species that may benefit from road verge habitats as refuges.
Context Road impacts on biodiversity are increasing worldwide. Few attempts have been made to integrate multiple taxonomic groups into roadkill mitigation plans, while using remotely sensed habitat suitability and functional connectivity. Objectives We pinpoint high-risk road locations (road planning units) for 19 woodland species from different taxonomic groups (non-flying mammals, birds, and bats) to enhance prioritisation and versatility of roadkill mitigation plans.Methods In Southern Portugal, we collected species occurrence data, roadkill, and high-resolution satellite imageries, along 15 years. We identified remotely sensed habitat metrics, in turn weighted together with functional connectivity models and road metrics to estimate roadkill vulnerability, using random forests. The roadkill cumulative risk across species is then estimated, as well the likelihood variation within and between taxonomic groups to verify prediction consistency. Results Remote sensing information thoroughly explained habitat suitability, identifying similar metrics within each group, and non-uniform environmental tolerance across species. Functional connectivity and habitat suitability significantly explained
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.