SUMMARYThe main goal of the current study was to evaluate the surface roughness of tooth-colored restorative materials after different finishing/polishing protocols, including a liquid polisher (BisCover, BISCO, Schaumburg, IL, USA). The restorative materials tested included two nanofilled resin composites (Filtek Supreme, 3M Dental Products, St Paul, MN, USA and Grandio, Voco, Cuxhaven, Germany), one resin-modified glass ionomer cement (Vitremer, 3M Dental Products) and one conventional glass ionomer cement (Meron Molar ART, Voco). The finishing/polishing methods were divided into five groups: G1 (compression with Mylar matrix), G2 (finishing with diamond burs), G3 (Sof-Lex, 3M Dental Products), G4 (BisCover, BISCO, after diamond burs) and G5 (BisCover after Sof-Lex). Five cylindrical specimens of
CR Perez • R Hirata Jr • AHMFT Silva EM Sampaio • MS Miranda
Clinical RelevanceThe use of a liquid polisher provided polished surfaces and reduced the surface roughness of tooth-colored restorative materials even when finishing procedures were performed solely with diamond burs.
In the present study we characterized titanium (Ti) surfaces submitted to different treatments and evaluated the response of osteoblasts derived from human alveolar bone to these surfaces. Five different surfaces were evaluated: ground (G), ground and chemical etched (G1-HF for 60 s), sand blasted (SB-Al(2)O(3) particles 65 mum), sand blasted and chemical etched (SLA1-HF for 60 s and SLA2-HF for 13 s). Surface morphology was evaluated under SEM and roughness parameters by contact scanning instrument. The presence of Al(2)O(3) was detected by EDS and the amount calculated by digital analyses. Osteoblasts were cultured on these surfaces and it was evaluated: cell adhesion, proliferation, and viability, alkaline phosphatase activity, total protein content, and matrix mineralization formation. Physical and chemical treatments produced very different surface morphologies. Al(2)O(3) residues were detected on SB and SLA2 surfaces. Only matrix mineralization formation was affected by different surface treatments, being increased on rough surface (SLA1) and reduced on surface with high amount of Al(2)O(3) residues (SB). On the basis of these findings, it is possible to conclude that high concentration of residual Al(2)O(3) negatively interfere with the process of matrix mineralization formation in contact with Ti implant surfaces.
SUMMARYThis study analyzed the influence of C-factor, flexural modulus and viscous flow on gap formation in resin composite restorations. Two resin composites, a mini-filled hybrid (P 60) and a nanofilled (Supreme), were used. The flexural modulus was obtained from bar-shaped specimens submitted to three-point bending. Viscous flow was obtained from the difference between the initial and final diameter of resin composite disks submitted to a load of 10 N for 120 seconds. Gap analysis was conducted in three types of cylindrical cavities (C-factor of 1.8, 2.6 and 3.4) that were prepared on the occlusal surfaces of human molars. The gap width at the dentin-resin composite interface was measured using a 3D scanning system (Talyscan 150). The data were analyzed by ANOVA and Student-Newman-Keuls' test, t-test and linear regression analysis (α=0.05). The cavities with C-factor 3.4 presented the highest Gap formation (p<0.0001). The lowest Gap formation was found in cavities restored with Supreme resin composite (p<0.0001). P 60 presented significantly higher flexural modulus and lower viscous flow than Supreme (p<0.0001). Regression analyses detected a significant influence of flexural modulus and viscous flow on gap formation (p<0.05).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.