A review of the investigations that have been made on adhesively bonded joints of fibre-reinforced plastic (FRP) composite structures (single skin and sandwich construction) is presented. The effects of surface preparation, joint configuration, adhesive properties, and environmental factors on the joint behaviour are described briefly for adhesively bonded FRP composite structures. The analytical and numerical methods of stress analysis required before failure prediction are discussed. The numerical approaches cover both linear and non-linear models. Several methods that have been used to predict failure in bonded joints are described. There is no general agreement about the method that should be used to predict failure since the failure strength and modes are different according to the various bonding methods and parameters, but progressive damage models are quite promising since important aspects of the joint behaviour can be modelled by using this approach. However, a lack of reliable failure criteria still exists, limiting in this way a more widespread application of adhesively bonded joints in principal load-bearing structural applications. An accurate strength prediction of the adhesively bonded joints is essential to decrease the amount of expensive testing at the design stage.
Adhesively-bonded joints are extensively used in several fields of engineering. Cohesive Zone Models (CZM) have been used for the strength prediction of adhesive joints, as an add-in to Finite Element (FE) analyses that allows simulation of damage growth, by consideration of energetic principles. A useful feature of CZM is that different shapes can be developed for the cohesive laws, depending on the nature of the material or interface to be simulated, allowing an accurate strength prediction. This work studies the influence of the CZM shape (triangular, exponential or trapezoidal) used to model a thin adhesive layer in single-lap adhesive joints, for an estimation of its influence on the strength prediction under different material conditions. By performing this study, guidelines are provided on the possibility to use a CZM shape that may not be the most suited for a particular adhesive, but that may be more straightforward to use/implement and have less convergence problems (e.g. triangular shaped CZM), thus attaining the solution faster. The overall results showed that joints bonded with ductile adhesives are highly influenced by the CZM shape, and that the trapezoidal shape fits best the experimental data. Moreover, the smaller is the overlap length (LO), the greater is the influence of the CZM shape. On the other hand, the influence of the CZM shape can be neglected whe n using brittle adhesives, without compromising too much the accuracy of the strength predictions.
The structural integrity of multi-component structures is usually determined by the strength and durability of their unions. Adhesive bonding is often chosen over welding, riveting and bolting, due to the reduction of stress concentrations, reduced weight penalty and easy manufacturing, amongst other issues. In the past decades, the Finite Element Method (FEM) has been used for the simulation and strength prediction of bonded structures, by strength of materials or fracture mechanics-based criteria. Cohesive-zone models (CZMs) have already proved to be an effective tool in modelling damage growth, surpassing a few limitations of the aforementioned techniques. Despite this fact, they still suffer from the restriction of damage growth only at predefined growth paths. The eXtended Finite Element Method (XFEM) is a recent improvement of the FEM, developed to allow the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom with special displacement functions, thus overcoming the main restriction of CZMs. These two techniques were tested to simulate adhesively bonded single-and double-lap joints. The comparative evaluation of the two methods showed their capabilities and/or limitations for this specific purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.