The advent of BRAF-targeted therapies led to increased survival in patients with metastatic melanomas harboring a BRAF V600 mutation (implicated in 46-48% of malignant melanomas). The Idylla(™) System (Idylla(™)), i.e., the real-time-PCR-based Idylla(™) BRAF Mutation Test performed on the fully-automated Idylla(™) platform, enables detection of the most frequent BRAF V600 mutations (V600E/E2/D, V600K/R/M) in tumor material within approximately 90 min and with 1% detection limit. Idylla(™) performance was determined in a multi-center study by analyzing BRAF mutational status of 148 archival formalin-fixed paraffin-embedded (FFPE) tumor samples from malignant melanoma patients, and comparing Idylla(™) results with assessments made by commercial or in-house routine diagnostic methods. Of the 148 samples analyzed, Idylla(™) initially recorded 7 insufficient DNA input calls and 15 results discordant with routine method results. Further analysis learned that the quality of 8 samples was insufficient for Idylla(™) testing, 1 sample had an invalid routine test result, and Idylla(™) results were confirmed in 10 samples. Hence, Idylla(™) identified all mutations present, including 7 not identified by routine methods. Idylla(™) enables fully automated BRAF V600 testing directly on FFPE tumor tissue with increased sensitivity, ease-of-use, and much shorter turnaround time compared to existing diagnostic tests, making it a tool for rapid, simple and highly reliable analysis of therapeutically relevant BRAF mutations, in particular for diagnostic units without molecular expertise and infrastructure.
Mutations in the TET2 and ASXL1 genes have been described in approximately 14% and 8% of patients, respectively, with classic myeloproliferative neoplasms (MPN), but their role as possible new diagnostic molecular markers is still inconclusive. In addition, other genes such as IDH1, IDH2, and c-CBL have also been reported in several myeloid neoplasms. We have studied the mutational status of TET2 (complete coding region), ASXL1 (exon12), IDH1 (R132), IDH2 (R140 and R172), and c-CBL (exons 8 and 9) in 62 MPN patients (52 essential thrombocythemia (ET), five polycythemia vera (PV), and five primary myelofibrosis (PMF)) negative for both JAK2 (V617F and exon 12) and MPL (exon 10) mutations. Pathogenic alterations in the TET2 gene were detected in three out 52 ET cases (4.8%). ASXL1 gene pathogenic mutations were also detected in three cases (two ET and one PMF). One ET patient harbored, simultaneously, one TET2 and one ASXL1 mutations. Mutations in the TET2 and ASXL1 genes showed no association with the JAK2 46/1 haplotype. Analysis of a JAK2V617F-positive cohort of 50 ET patients showed no mutations in either the TET2 or ASXL1 genes. Regarding IDH1, IDH2, and c-CBL genes, no mutations were found in any patient. In conclusion, TET2 and ASXL1 pathogenic mutations are found in 8% of MPN lacking JAK2 and MPL mutations, whereas IDH1, IDH2, and c-CBL mutations are not detected in this subset of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.