Sistemas de processamento digital de imagens podem ter tempo de execução não compatíveis com o esperado pelo usuário. Uma possível solução é o uso de processamento paralelo para diminuir o tempo de execução de algoritmos de processamento de imagens. A tecnologia CUDA oferece uma interface de desenvolvimento para tirar proveito do processamento paralelo em GPUs, entretanto, possui uma alta curva de aprendizagem e exige conhecimento de recursos específicos, como sua arquitetura e tipos de memória. Este trabalho propõe uma ferramenta semi-automática para converter algoritmos de processamento de imagens sequenciais em uma versão paralela para GPU na qual o programador não precisa conhecer os detalhes da arquitetura, nem os seus comandos de programação específicos. Para tanto, o programador deve adotar a definição da API deste trabalho, seguindo os protótipos de funções e incluir, em seu código fonte, diretivas que identifiquem uma das quatro categorias de processamento: operações pixel a pixel, operações de vizinhança de pixel, operações que reduzem a imagem para um valor escalar e operações que reduzem a imagem para um vetor. O resultado final é o código fonte paralelizado na tecnologia CUDA. Foram realizados experimentos para cada uma das categorias e os resultados mostraram que a versão paralela diminui o tempo de execução para três categorias, exceto a de operações que reduzem a imagem para um vetor devido aos acessos simultâneos ao mesmo endereço de memória da posição do vetor.
The advancement of the internet to the paradigm of the Internetof Things (IoT) has brought to society new ways of generating,sharing and using information. The evolution of computing capacityand energy savings in IoT equipament combined with bettersoftware can enabled several new applications, among which wecan highlight the monitoring of people’s health through pervasivedevices connected to the body. In view of this, this work proposesan algorithm to detect atypical situations such as falls in the elderlyand other groups that need health care using accelerometerscontained in wearable devices, particularly smartwatches. For theexperimental evaluation of the proposed algorithm, a database thatcontains data from wearable sensors, environmental sensors, andvisual devices was employed. The metrics used in the evaluationwere accuracy, precision, recall and f1-score, with recall being themost relevant metric in the context. Results show that the bestconfiguration of the algorithm is able to identify falls with 96%recall and F1-score of 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.