Symptoms of forest decline, apparently due to climate change, have become evident in the last 10 years on the Trans-Mexican Volcanic Belt and northwestern temperate forest of Mexico, particularly at the xeric (low elevational) limit of several forest tree species. We review and provide recent evidence of massive infestation of timberline Pinus hartwegii Lindl. by the mistletoes Arceuthobium globosum Hawksw. & Wiens and Arceuthobium vaginatum (Humb. & Bonpl. ex Willd.) J.Presl; insufficient Abies religiosa (Kunth) Schltdl. & Cham. seedling recruitment at the Monarch Butterfly Biosphere Reserve; indications of inbreeding and defoliation in endangered Picea chihuahuana Martínez, Picea martinezii T.F. Patt., Picea mexicana Martínez, and extreme southern populations of Pseudotsuga menziesii (Mirb.) Franco; and the incidence of unusual pest and disease outbreaks (e.g., Dendroctonus Erichson, 1836 spp., Neodiprion autumnalis Smith, and Phytophthora cinnamomi Rands) in several conifer and oak species. We also discuss a difficult question: Is natural genetic variation sufficient to provide populations with the adaptive variation necessary to survive the natural selection imposed by projected climate change scenarios, or will phenotypic plasticity be exhausted and populations decline? Controversial ex situ conservation within natural protected areas, assisted migration, and translocation of species ensembles are discussed as options by which to accommodate projected climatic change impacts on the management and conservation practices of the megadiverse Mexican temperate forest.
The distributions of the three Mexican spruces are fragmented, possibly leading to phenological, morphological and genetic differentiation, which is partly caused by local adaptation. In this study, we estimated for the first time the intra- and inter-specific phenotypic variation in 5641 seedlings from provenances of the three Mexican spruces. We examined (i) provenance-related differences in the seedling survival rate, diameter (D), height (H) and seed weight (SW) as quantitative traits, (ii) the association between the survival rate, D, H and SW and climatic and soil variables in the Picea provenances and (iii) (narrow-sense) heritability (within-provenance) based on D and H under the same nursery conditions, assuming that the response can be considered as a proxy for quantitative genetic differentiation between provenances. All Mexican spruce species differed significantly in H, and all eight provenances studied were significantly different in D and H, except for two neighboring provenances of P. mexicana. Very strong, significant correlations (up to R2 = 0.96) were found between H, the survival rate and SW with respect to environmental factors of provenance/seed origin. Additionally, the heritability index explained a high percentage of the provenance-related variance. The use of germplasm for restoration in different sites and with different populations requires collecting seeds from numerous trees from as many provenances as possible, but should be carried out with caution owing to the apparently strong local adaptation in provenances of the Mexican spruces.
Background In the projected climate change scenarios, assisted migration might play an important role in the ex situ conservation of the threatened plant species, by translocate them to similar suitable habitats outside their native distributions. However, it is unclear if such habitats will be available for the Rare Endemic Plant Species (REPS), because of their very restricted habitats. The aims of this study were to perform a population size assessment for the REPS Picea martinezii Patterson and Picea mexicana Martínez, and to evaluate the potential species distributions and their possibilities for assisted migration inside México and worldwide. Methods We performed demographic censuses, field surveys in search for new stands, and developed distribution models for Last Glacial Maximum (22,000 years ago), Middle Holocene (6,000 years ago), current (1961–1990) and future (2050 and 2070) periods, for the whole Mexican territory (considering climatic, soil, geologic and topographic variables) and for all global land areas (based only on climate). Results Our censuses showed populations of 89,266 and 39,059 individuals for P. martinezii and P. mexicana, respectively, including known populations and new stands. Projections for México indicated somewhat larger suitable areas in the past, now restricted to the known populations and new stands, where they will disappear by 2050 in a pessimistic climatic scenario, and scarce marginal areas (p = 0.5–0.79) remaining only for P. martinezii by 2070. Worldwide projections (based only on climate variables) revealed few marginal areas in 2050 only in México for P. martinezii, and several large areas (p ≥ 0.5) for P. mexicana around the world (all outside México), especially on the Himalayas in India and the Chungyang mountains in Taiwan with highly suitable (p ≥ 0.8) climate habitats in current and future (2050) conditions. However, those suitable areas are currently inhabited by other endemic spruces: Picea smithiana (Wall.) Boiss and Picea morrisonicola Hayata, respectively. Conclusions Assisted migration would only be an option for P. martinezii on scarce marginal sites in México, and the possibilities for P. mexicana would be continental and transcontinental translocations. This rises two possible issues for future ex situ conservation programs: the first is related to whether or not consider assisted migration to marginal sites which do not cover the main habitat requirements for the species; the second is related to which species (the local or the foreign) should be prioritized for conservation when suitable habitat is found elsewhere but is inhabited by other endemic species. This highlights the necessity to discuss new policies, guidelines and mechanisms of international cooperation to deal with the expected high species extinction rates, linked to projected climate change.
The three Mexican spruces’ distributions are fragmented, which could lead to phenological, morphological and genetic differentiation, partially caused by local adaptation. In this study, we examined the effect that climatic variables had on the survival and growth of 5641 Picea seedlings, coming from eight seed provenances of three species and produced in identical nursery conditions. The respective responses of each species and provenance can be considered as a proxy of the genetic differentiation and adaptation of each population. A cluster analysis revealed: (i) significant differences in genetic quantitative traits among the three Picea species and (ii) significant correlations between genetic quantitative traits and climatic factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.