Computing technologies have opened up a myriad of possibilities for expanding the sonic capabilities of acoustic musical instruments. Musicians nowadays employ a variety of rather inexpensive, wireless sensor-based systems to obtain refined control of interactive musical performances in actual musical situations like live music concerts. It is essential though to clearly understand the capabilities and limitations of such acquisition systems and their potential influence on high-level control of musical processes. In this study, we evaluate one such system composed of an inertial sensor (MetaMotionR) and a hexaphonic nylon guitar for capturing strumming gestures. To characterize this system, we compared it with a high-end commercial motion capture system (Qualisys) typically used in the controlled environments of research laboratories, in two complementary tasks: comparisons of rotational and translational data. For the rotations, we were able to compare our results with those that are found in the literature, obtaining RMSE below 10° for 88% of the curves. The translations were compared in two ways: by double derivation of positional data from the mocap and by double integration of IMU acceleration data. For the task of estimating displacements from acceleration data, we developed a compensative-integration method to deal with the oscillatory character of the strumming, whose approximative results are very dependent on the type of gestures and segmentation; a value of 0.77 was obtained for the average of the normalized covariance coefficients of the displacement magnitudes. Although not in the ideal range, these results point to a clearly acceptable trade-off between the flexibility, portability and low cost of the proposed system when compared to the limited use and cost of the high-end motion capture standard in interactive music setups.
To tackle digital musical instrument (DMI) longevity and the problem of the second performer, we proposed the T-Stick Music Creation Project, a series of musical commissions along with workshops, mentorship, and technical support, meant to foment composition and performance using the T-Stick and provide an opportunity to improve technical and pedagogical support for the instrument. Based on the project's outcomes, we describe three main contributions: our approach; the artistic works produced; and analysis of these works demonstrating the T-Stick as actuator, modulator, and data provider.
In this paper, we discuss the importance of replicability in Digital Musical Instrument (DMI) design and the NIME community. Replication enables us to: create new artifacts based on existing ones, experiment DMIs in different contexts and cultures, and validate obtained results from evaluations. We investigate how the papers present artifact documentation and source code by analyzing the NIME proceedings from 2018, 2019, and 2020. We argue that the presence and the quality of documentation are good indicators of replicability and can be beneficial for the NIME community. Finally, we discuss the importance of documentation for replication, propose a call to action towards more replicable projects, and present a practical guide informing future steps toward replicability in the NIME community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.