The agricultural activities practice often demands an intensive application of fertilizers. Phosphate and nitrogen fertilizers are the most employed in the corn growing areas of the central Mexico highlands. The first ones presents an uranium content ranging from 50 to 200 mg · kg −1 depending on the origin of the phosphate rock used in its production. It is crucial to analyze the rainwater, surface water, soil water at several depths, groundwater and soil to determine the simultaneous behavior of phosphate, nitrate and uranium, and their leaching in a specific agricultural land. Uranium concentration, 16 mg · kg −1 , in the soil water was higher than that in the surface water and groundwater. The different concentrations are due to an unequal uranium distribution in the environment. The phosphate concentration, 37.4 mg · kg −1 , diminished throughout the profile of the soil due to a sorption-precipitation process. The nitrates were leached toward groundwater after the application of fertilizers, but the nitrate concentration in it did not exceed the limit for drinking water.
Layered double hydroxides (LDH) M2+M3+CO32− were synthesized following the sol-gel methodology using Mg-Al, Mg-Fe, and Zn-Al as cation pairs for subsequent use in the preparation of TiO2/LDH materials. The samples were characterized by infrared spectroscopy (IR), scanning electron microscopy (SEM), and the Brunauer–Emmett–Teller (BET) technique to determine the surface area (SA); the results of which were used to determine the roughness of the samples in terms of surface fractal dimension (D). The prepared materials exhibited both adsorption and photocatalytic properties in the removal of phenol in aqueous solution under ultraviolet irradiation. This work studies the relationship between the textural parameters of the materials obtained in relation to their photocatalytic efficiency and adsorption capacity, finding that the surface of the solids, their structural heterogeneity, and roughness condition the photodegradation and adsorption processes, using phenol as reference organic pollutant. The results show that different cation in LDH influences in photocatalytic capacity; the TiO2/ZnAl was the best material in one test, but after 10 times of test, the TiO2/MgFe gave the better photodegradation material. In adsorption capacity, TiO2/ZnAl and TiO2/MgFe have a close rate for phenol adsorption and both were better than TiO2/MgAl. The differences in textural characteristics (surface area, surface roughness, and pore-size distribution) affected phenol adsorption and photodegradation efficiency.
Natural fluorapatite samples were contacted with uranyl nitrate solutions (from 10 -2 to 10 -6 M), adjusted to pH 6.0, then, shaken for times varying between 15 minutes to 72 hours, at room temperature. After that, the solid and liquid phases were separated by centrifugation and the solid was dried at 80 ~ overnight. The uranium analysis of the solid samples and solutions revealed that uranium was incorporated over fluorapatite. Selected solid samples produced by contacting treatments were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. XRD patterns showed the growth of uranyl species in the fluorapatite. Imaging by SEM at 20000x showed the location of uranyl compounds in a crystalline layer in the surface of fluorapatite grains, This layer was well defined for the 10-2M of U-contacting solution, but a saturation value was attained at 64% of uranium uptake yield. In the case of 10 -4 M and lower U-contacting solution, the uranium uptake yield was near of 90% after 45 minutes. This fact suggests that natural fluorapatite has excellent properties to immobilize uranium compounds in a solution. Afterwards, the pregnant fluorapatite mineral was regenerated using an alkaline-leaching process. The uranium separated in this way is concentrated and can be handled to a final disposition.
Structure and superficial properties of tectosilicates found in soils with potential to retain uranium are studied in this work. These tectosilicates are largely available as natural minerals in the soil and are composed mainly by anorthite (CaAl2Si2O8), albite (NaAlSi3O8) and orthoclase (KAlSi3O8), in which albite has approximately 3 times the content of orthoclase and 2.5 times the content of anorthite. However, anorthite has a double cell structure, which could result in approximately the same sorption effect as albite. The acidity constants calculated with the surface complexation model suggested that the three components have similar amphoteric behavior in presence of high ionic strength ground salt solutions. The composite mineral has a specific surface area of 20.5 m 2 g-1 with site density of 2.8 sites nm-2. These characteristics make this mineral a good candidate for uranium capture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.