Renal functional reserve, microalbuminuria, and plasma atrial natriuretic factor were measured in 21 offspring (9.5 +/- 0.5 years of age, mean +/- SEM) of hypertensive parents and in eight children (10 +/- 0.5 years of age) with no family history of hypertension who were used as a control group. Renal functional reserve was evaluated by measurement of the changes in creatinine clearance after an oral protein load of 45 g/m2. Atrial natriuretic factor levels were determined before and 60 minutes after the protein load, and microalbuminuria in fractional urine before and 120 minutes after the same stimulus as well as in a 24-hour urine collection. All children in the control group significantly increased their creatinine clearance after the protein load (preload, 122 +/- 12; 60 minutes, 144 +/- 9; 120 minutes, 154 +/- 11; 180 minutes, 144 +/- 9 ml/min/1.73 m2; all values were significant vs. preload, p less than 0.005). In contrast, only 13 of 21 offspring of hypertensive parents increased their creatinine clearance to values within 2 SD of the increase shown by the control group (preload, 144 +/- 11; 60 minutes, 153 +/- 7; 120 minutes, 202 +/- 13 ml/min/1.73 m2; p less than 0.001 vs. preload; 180 minutes, 214 +/- 19 ml/min/1.73 m2, p less than 0.001 vs. preload). The remaining eight offspring of hypertensive parents showed no detectable changes (nonresponders) (preload, 189 +/- 18; 60 minutes, 146 +/- 11; 120 minutes, 170 +/- 14; 180 minutes, 168 +/- 13 ml/min/1.73 m2; all values p = NS). No changes in atrial natriuretic factor after the protein load were observed in any group. Offspring of hypertensive parents presented higher microalbuminuria levels in 24-hour urine specimens (3.1 micrograms/min, tolerance factor [TF]2.2) than controls (2.1 micrograms/min, TF 1.5) (p less than 0.05). Although microalbuminuria increased significantly after the water load in the control group (p less than 0.05) and in the offspring of hypertensive parents (p less than 0.01), it returned to baseline at 120 minutes in the former but not in the latter (p less than 0.05 vs. baseline). The lack of renal functional reserve in nonresponders was significantly related (p less than 0.05) to the presence of higher levels of microalbuminuria. We conclude that the absence of renal functional reserve and increased microalbuminuria in some normotensive children who are offspring of essential hypertensive parents can indicate that subtle alterations in renal function may precede the onset of clinical hypertension.
Introduction Anemia is a common complication of chronic kidney disease (CKD) in children; however, the role of inflammation in its pathogenesis remains incompletely understood. Methods To elucidate the role of interleukin (IL)-6 in renal anemia, we induced CKD by adenine diet in juvenile wild-type (WT) and IL-6 deficient ( Il6 KO) mice, and examined serum IL-6 and relevant parameters in children with CKD. Results WT-CKD mice developed anemia despite increases in serum erythropoietin and displayed low serum iron and elevated serum IL-6. IL-6 deficiency resulted in a significant improvement of red blood cell count and hemoglobin in CKD mice. This effect was associated with improvement of hypoferremia by Il6 deletion, likely mediated by hepcidin. However, correction of hypoferremia by oral iron supplementation in WT-CKD mice did not fully replicate the protective effects of Il6 deletion, suggesting an additional iron-independent role for IL-6 in CKD-anemia. Indeed, Il6 deletion mitigated the severity of renal fibrosis and alleviated relative erythropoietin insufficiency in CKD mice. Cytokine profiling in a pediatric CKD cohort demonstrated that of 10 cytokines (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, tumor necrosis factor (TNF)-α, and interferon-γ), only IL-6 was significantly (inversely) associated with hemoglobin when adjusted for glomerular filtration rate (GFR). The association between IL-6 and hemoglobin in children with CKD remained significant after adjustment for CKD stage, iron therapy, and hepcidin. Discussion IL-6 contributes to development of anemia in juvenile CKD, through mechanisms that include induction of hypoferremia, aggravation of renal fibrosis, and alteration of the erythropoietin axis. IL-6 appears to be a promising therapeutic target in the management of CKD-anemia.
Background Focal segmental glomerulosclerosis (FSGS) recurs in 20–40 % of allografts. Plasmapheresis (TPE) has been one of the mainstays of treatment with variable results. Rituximab (RTX), a monoclonal antibody to the protein CD20, is being used for treatment of recurrent FSGS (recFSGS) but pediatric experience is limited. Methods We conducted a retrospective review of eight patients with recFSGS, treated with RTX (1–4 doses) after having minimal response to TPE. Complete response was defined as a decrease in urine protein creatinine ratio (Up/c) to less than 0.2 and partial response was a decrease in Up/c ratio by 50 % of baseline and in the sub-nephrotic range (U p/c <2). Results Complete response was seen in two of eight patients, and partial response was seen in four of eight patients. Two patients had no response. At last follow-up, all the partial responders had sub-nephrotic range proteinuria (Up/c ratios ranging from 0.29 to 1.6). Delayed response, up to 9 months post-RTX, was also seen in some of the patients. Significant complications such as rituximab-associated lung injury (RALI), acute tubular necrosis, and central nervous system (CNS) malignancy were also observed in our case series. Conclusions Rituximab can be used with caution as a treatment for recFSGS. Efficacy is variable from none to complete response. Even partial reduction in proteinuria is of benefit in prolonging the life of the allograft. Long-term, multicenter studies are needed to prove its sustained efficacy in those who respond and to monitor for serious adverse effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.