RESUMEN: El presente trabajo tiene como objetivo presentar una revisión teórica de las principales formas abreviadas que han sido desarrolladas por varios autores a partir de las distintas versiones de la Escala de inteligencia de Wechsler para adultos que han ido surgiendo a lo largo del tiempo. El desarrollo de formas cortas ha ido creciendo en paralelo a la aparición de las nuevas versiones de la escala completa. Una forma abreviada permite estimar la capacidad intelectual con un tiempo de administración menor, por lo que puede ser de gran utilidad si el objetivo de evaluación es obtener una medida general de la capacidad intelectual. ABSTRACT: The aim of this study is to present a theoretical review of the main short forms that have been developed by several authors based on different versions of the Wechsler Adult Intelligence Scale. The development of short forms has been growing parallel to the appearance of new versions of the full scale. A short form allows estimating the intellectual capacity of someone with less time of administration, which could be very useful if the assessment objective is to obtain an overall measure of intellectual capacity.
BackgroundSevere sepsis and septic shock are among the leading causes of death in the USA. While early prediction of severe sepsis can reduce adverse patient outcomes, sepsis remains one of the most expensive conditions to diagnose and treat.ObjectiveThe purpose of this study was to evaluate the effect of a machine learning algorithm for severe sepsis prediction on in-hospital mortality, hospital length of stay and 30-day readmission.DesignProspective clinical outcomes evaluation.SettingEvaluation was performed on a multiyear, multicentre clinical data set of real-world data containing 75 147 patient encounters from nine hospitals across the continental USA, ranging from community hospitals to large academic medical centres.ParticipantsAnalyses were performed for 17 758 adult patients who met two or more systemic inflammatory response syndrome criteria at any point during their stay (‘sepsis-related’ patients).InterventionsMachine learning algorithm for severe sepsis prediction.Outcome measuresIn-hospital mortality, length of stay and 30-day readmission rates.ResultsHospitals saw an average 39.5% reduction of in-hospital mortality, a 32.3% reduction in hospital length of stay and a 22.7% reduction in 30-day readmission rate for sepsis-related patient stays when using the machine learning algorithm in clinical outcomes analysis.ConclusionsReductions of in-hospital mortality, hospital length of stay and 30-day readmissions were observed in real-world clinical use of the machine learning-based algorithm. The predictive algorithm may be successfully used to improve sepsis-related outcomes in live clinical settings.Trial registration numberNCT03960203
Background Severe sepsis and septic shock are among the leading causes of death in the United States and sepsis remains one of the most expensive conditions to diagnose and treat. Accurate early diagnosis and treatment can reduce the risk of adverse patient outcomes, but the efficacy of traditional rule-based screening methods is limited. The purpose of this study was to develop and validate a machine learning algorithm (MLA) for severe sepsis prediction up to 48 h before onset using a diverse patient dataset. Methods Retrospective analysis was performed on datasets composed of de-identified electronic health records collected between 2001 and 2017, including 510,497 inpatient and emergency encounters from 461 health centers collected between 2001 and 2015, and 20,647 inpatient and emergency encounters collected in 2017 from a community hospital. MLA performance was compared to commonly used disease severity scoring systems and was evaluated at 0, 4, 6, 12, 24, and 48 h prior to severe sepsis onset. Results 270,438 patients were included in analysis. At time of onset, the MLA demonstrated an AUROC of 0.931 (95% CI 0.914, 0.948) and a diagnostic odds ratio (DOR) of 53.105 on a testing dataset, exceeding MEWS (0.725, P < .001; DOR 4.358), SOFA (0.716; P < .001; DOR 3.720), and SIRS (0.655; P < .001; DOR 3.290). For prediction 48 h prior to onset, the MLA achieved an AUROC of 0.827 (95% CI 0.806, 0.848) on a testing dataset. On an external validation dataset, the MLA achieved an AUROC of 0.948 (95% CI 0.942, 0.954) at the time of onset, and 0.752 at 48 h prior to onset. Conclusions The MLA accurately predicts severe sepsis onset up to 48 h in advance using only readily available vital signs extracted from the existing patient electronic health records. Relevant implications for clinical practice include improved patient outcomes from early severe sepsis detection and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.