The extraction of nanocrystalline cellulose from agro-residues is an interesting alternative to recover these materials. In the present study, nanocrystalline cellulose was extracted from pine wood and corncob. In addition, microcrystalline cellulose was used as a reference to compare results. Initially, the lignocellulosic residues were submitted to delignification pre-treatments. At the end of the process, the bleached fibre was submitted to acid hydrolysis. Additionally, microparticles were obtained from the spray-drying of the nanocrystalline cellulose suspensions. The nanocrystalline cellulose yield for the pine wood was 9.0-% of the value attained for the microcrystalline cellulose. For the corncob, the value was 23.5-%. Therefore, complementary studies are necessary to improve the yield. The spray-dried microparticles showed a crystallinity index of 67.8-% for the pine wood, 70.9-% for the corncob and 79.3-% for the microcrystalline cellulose. These microparticles have great potential for use in the production of polymer composites processed by extrusion.
Burned magnesia-chromite bricks are the standard product for the lining of furnaces in lead industry, where the short service life is a great problem. Used sintered magnesia-chromite brick sample from short rotary furnace lining, sent by a secondary lead manufacturer, showed parallel cracks to the hot face due to structural spalling damage. The refractory infiltrated region and slag interface were analyzed using a scanning electron microscope with an energy dispersive spectroscopy analyzer, and X-ray diffraction powder analysis. Crucible corrosion test was performed to evaluate the influence of slag attack. The results showed that the structural spalling was due to strong Pb-infiltration of the refractory microstructure by bath components of the furnace (metallic lead and lead sulphite) during the reduction process and that the slag infiltration had little contribution due to the good resistance of the magnesia-chromite bricks to FeO rich slag attack.
Bionanocomposite films based on chitosan and nanocellulose (nanocrystals or nanofibrils) have gained considerable attention for biomedical applications, especially for wound dressings. However, the development of these films as controlled drug release dressings is still under-exploited. Therefore, this work aimed to design chitosan/nanocellulose-based bionanocomposite films, loaded by betamethasone or silver sulfadiazine, as functional dressings. The films were obtained by solvent casting and characterized by physicochemical, mechanical, barrier properties, in vitro drug release, and antimicrobial activity. The nanocellulose type, physical state, and content caused influence on the film's properties providing different physical, barrier, and drug release profiles. They are semi-occlusive and mechanically resistant; the drug release is controlled, and possesses antimicrobial activity. In conclusion, the developed biodegradable bionanocomposite films are promising as active dressings for controlled drug delivery in the wound site and have specific applications according to their features to treat inflamed and purulent wounds, noninfectious dry wounds, and infectious wounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.