Running high-resolution physical models is computationally expensive and essential for many disciplines. Agriculture, transportation, and energy are sectors that depend on highresolution weather models, which typically consume many hours of large High Performance Computing (HPC) systems to deliver timely results. Many users cannot afford to run the desired resolution and are forced to use low resolution output. One simple solution is to interpolate results for visualization. It is also possible to combine an ensemble of low resolution models to obtain a better prediction. However, these approaches fail to capture the redundant information and patterns in the lowresolution input that could help improve the quality of prediction. In this paper, we propose and evaluate a strategy based on a deep neural network to learn a high-resolution representation from low-resolution predictions using weather forecast as a practical use case. We take a supervised learning approach, since obtaining labeled data can be done automatically. Our results show significant improvement when compared with standard practices and the strategy is still lightweight enough to run on modest computer systems.Author pre-print. Paper accepted for publication at 14th IEEE eScience.
Abstract. Process placement is a technique widely used on parallel machines with heterogeneous interconnections to reduce the overall communication time. For instance, two processes which communicate frequently are mapped close to each other. Finding the optimal mapping between threads and cores in a shared-memory environment (for example, OpenMP and Pthreads) is an even more complex task due to implicit communication. In this work, we examine data sharing patterns between threads in different workloads and use those patterns in a similar way as messages are used to map processes in cluster computers. We evaluated our technique on two state-of-the-art multi-core processors and achieved moderate improvements in the common case and considerable improvements in some cases, reducing execution time by up to 45%.
High Performance Computing (HPC) clouds are becoming an alternative to on-premise clusters for executing scientific applications and business analytics services. Most research efforts in HPC cloud aim to understand the cost-benefit of moving resource-intensive applications from on-premise environments to public cloud platforms. Industry trends show hybrid environments are the natural path to get the best of the on-premise and cloud resources-steady (and sensitive) workloads can run on on-premise resources and peak demand can leverage remote resources in a pay-as-you-go manner. Nevertheless, there are plenty of questions to be answered in HPC cloud, which range from how to extract the best performance of an unknown underlying platform to what services are essential to make its usage easier. Moreover, the discussion on the right pricing and contractual models to fit small and large users is relevant for the sustainability of HPC clouds. This paper brings a survey and taxonomy of efforts in HPC cloud and a vision on what we believe is ahead of us, including a set of research challenges that, once tackled, can help advance businesses and scientific discoveries. This becomes particularly relevant due to the fast increasing wave of new HPC applications coming from big data and artificial intelligence. users have no visibility or concerns on costs of running jobs. However, large clusters do incur expenses and, when not properly managed, can generate resource wastage and poor quality of service.Motivated by the different utilization levels of clusters around the globe and by the need to run even larger parallel programs, in the early 2000s, Grid Computing became relevant for the HPC community. Grids offer users access to powerful resources managed by autonomous administrative domains [50,51]. The notion of monetary costs for running applications was soft, favoring a more collaborative model of resource sharing. Therefore, quality of service was not strict in Grids, having users relying on best-effort policies to run applications.In the late 2000s, cloud computing [8,26,91] was quickly increasing its maturity level and popularity, and studies started to emerge on the viability of executing HPC applications on remote cloud resources. These applications, which consume more resources than traditional cloud applications and usually are executed in batches rather than 24x7 services, range from parallel applications written in Message Passing Interface (MPI) [58,59] to the newest big data [11,14,39,101] and artificial intelligence applications-the latter mostly relying on deep learning [34,80]. Cloud then came up as an evolution of a series of technologies, mainly on virtualization and computer networks, which facilitated both workload management and interaction with remote resources respectively. Apart from software and hardware, cloud offers a business model where users pay for resources on demand. Compared to traditional HPC environments, in clouds users can quickly adjust their resource pools, via a mechanism known as elast...
Among the many reasons for load imbalance in weather forecasting models, the dynamic imbalance caused by localized variations on the state of the atmosphere is the hardest one to handle. As an example, active thunderstorms may substantially increase load at a certain timestep with respect to previous timesteps in an unpredictable mannerafter all, tracking storms is one of the reasons for running a weather forecasting model. In this paper, we present a comparative analysis of different load balancing algorithms to deal with this kind of load imbalance. We analyze the impact of these strategies on computation and communication and the effects caused by the frequency at which the load balancer is invoked on execution time. This is done without any code modification, employing the concept of processor virtualization, which basically means that the domain is over-decomposed and the unit of rebalance is a sub-domain. With this approach, we were able to reduce the execution time of a full, real-world weather model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.