The hydrogen spill-over mechanism was studied by applying Density Functional Theory. We used small palladium clusters to act as the catalyst supported on the substrate (comprised of pyridinic and pyrrolic nitrogen doped graphene), in order to study hydrogen dissociation, migration and diffusion. Charge transfer and strong binding between the catalyst and the substrate lead to dissociated states of H and prevent clusters from detaching and coalescing. In dissociated cases of H on Pd clusters, energy barriers below 0.6 eV were found. Likewise, concerning hydrogen migration from the catalyst to the substrate, energy barrier values of 0.8 eV (pyridinic defect) and 0.5 eV (pyrrolic defect) were apparent in the case of the Pd cluster at full hydrogen saturation. This indicates that hydrogen dissociation and migration may occur spontaneously at room temperature. This result shows that the interaction between the defects and the small metal clusters may explain the role that defects play in hydrogen migration from the catalyst to the substrate. Subsequently, it was found that thermal desorption does not limit chemisorbed hydrogen diffusion on the substrate. This work may thus help to determine experimental strategies with the capacity to enhance hydrogen storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.