Detection of Leptospira by PCR had not yet been described in snakes. This study investigated, by microscopic agglutination test (MAT) and PCR, the presence of antibodies to Leptospira spp. and Leptospira spp., respectively, in venomous and non-venomous wildlife and captivity snakes. All snakes were divided into three groups to be compared: Group 1 (wildlife snakes - WS); Group 2 (snakes in intensive captivity - IC), and Group 3 (collective semi-extensive captivity -CC). Of the 147 snakes studied, 52 (35.4%) were positive for leptospirosis by MAT, 8 (15.4%) belonging to Group 1 (WS), 34 (65.4%) to Group 2 (IC) and 10 (19.2%) to Group 3 (CC). Jararaca (Bothrops jararaca) presented the highest average titer (66.7%, N=22/33) among the three group studied, and Hardjo prajtino was the most prevalent serovar (88.5%, N=46/52), with titers varying from 100 to 3200. Leptospira interrogans was revealed by PCR in kidney and liver of caiçaca (Bothrops moojeni) and jararaca-pintada (Bothrops pauloensis), showing 100% and 93% identity respectively. Future studies should be carried out for better understanding of the role of snakes as a reservoir of Leptospira in nature.
The venom of Bothrops jararaca is composed of complex mixture of molecules, mainly lectins, metalloproteinases, serinoproteinases, desintegrins, phospholipases, and peptides. This composition may vary according to the snake's age, gender, and region of origin. The aim of the was to determine individual variation in Bothrops jararaca venom in the Botucatu region, Sao Paulo State, Brazil, by means of enzymatic, biochemical, and pharmacological characterization, utilizing in vitro tests and biological assays. The activities were compared with those of Brazilian Reference Venom (BRV). Protein concentration varied between adult and juvenile groups. The electrophoretic profiles were similar, with molecular masses ranging between 25 and 50 kD, but with intraspecific variations. Reverse-phase high-performance liquid chromatography (RP-HPLC) revealed protein concentration differences. Coagulant activity did not differ significantly among adult groups, but there was a large variation between juvenile venom and BRV, which coagulated more extensively. Venoms from adults displayed greater hemorrhagic activity, especially in males recently obtained from the wild. In contrast, juveniles kept in captivity and adult males showed higher values. Edematogenic activity displayed an increase in edema in all groups. At the mean lethal dose (LD₅₀), toxicity varied significantly between groups, with venom from captive females being threefold more toxic than juvenile venom. Data illustrate the intra- and interspecific complexity that occurs in snake venoms, which may be attributed to ontogenetic, sexual, and environmental factors that affect variability in Bothrops jararaca venom. Further, it is proposed that Brazilian public health authorities document the constitution of pooled venom employed in the immunization of serum-producing animals due to this variability in venom properties. Given the large Brazilian territory, this variability requires regional monitoring and evaluation of the efficacy of bothropic antivenom in treatment of snakebite and consequent permanent sequelae observed.
Keeping snakes in captivity to produce venom for scientific research and production of inputs is now a worldwide practice. Maintaining snakes in captivity involves capture, infrastructure investments, management techniques, and appropriate qualified personnel. Further, the success of the project requires knowledge of habitat, nutrition, and reproduction, and control of opportunistic infections. This study evaluated the management of snakes in three types of captivity (quarantine, intensive, and semiextensive) and diagnosed bacterial and fungal contaminants. A bacteriological profile was obtained by swabbing the oral and cloacal cavities, scales, and venoms of healthy adult snakes from Bothrops jararaca (Bj) and Crotalus durissus terrificus (Cdt). There was predominance of Enterobacteriaceae, especially non-fermenting Gram-negative bacilli excluding Pseudomonas spp and Gram- positive bacteria. Statistically, intensive captivity resulted in the highest number of bacterial isolates, followed by recent capture (quarantine) and by semiextensive captivity. No statistical difference was found between Bj and Cdt bacterial frequency. In vitro bacterial susceptibility testing found the highest resistance against the semisynthetic penicillins (amoxicillin and ampicillin) and highest sensitivity to amicacin and tobramycin aminoglycosides. To evaluate mycological profile of snakes from intensive captivity, samples were obtained from two healthy Bj and one B. moojeni, one B. pauloensis, and one Cdt showing whitish lesions on the scales suggestive of ringworm. Using conventional methods and DNA-based molecular procedures, five samples of Trichosporon asahii were identified. Despite the traditional role of intense captivity in ophidian venom production, semiextensive captivity was more effective in the present study by virtue of presenting superior control of bacterial and fungal transmission, easier management, lowest cost, and decreased rate of mortality; therefore, it should be considered as a good alternative for tropical countries.
Background The 2017–2018 yellow fever virus (YFV) outbreak in southeastern Brazil marked a reemergence of YFV in urban states that had been YFV-free for nearly a century. Unlike earlier urban YFV transmission, this epidemic was driven by forest mosquitoes. The objective of this study was to evaluate environmental drivers of this outbreak. Methodology/Principal findings Using surveillance data from the Brazilian Ministry of Health on human and non-human primate (NHP) cases of YFV, we traced the spatiotemporal progression of the outbreak. We then assessed the epidemic timing in relation to drought using a monthly Standardized Precipitation Evapotranspiration Index (SPEI) and evaluated demographic risk factors for rural or outdoor exposure amongst YFV cases. Finally, we developed a mechanistic framework to map the relationship between drought and YFV. Both human and NHP cases were first identified in a hot, dry, rural area in northern Minas Gerais before spreading southeast into the more cool, wet urban states. Outbreaks coincided with drought in all four southeastern states of Brazil and an extreme drought in Minas Gerais. Confirmed YFV cases had an increased odds of being male (OR 2.6; 95% CI 2.2–3.0), working age (OR: 1.8; 95% CI: 1.5–2.1), and reporting any recent travel (OR: 2.8; 95% CI: 2.3–3.3). Based on this data as well as mosquito and non-human primate biology, we created the “Mono-DrY” mechanistic framework showing how an unusual drought in this region could have amplified YFV transmission at the rural-urban interface and sparked the spread of this epidemic. Conclusions/Significance The 2017–2018 YFV epidemic in Brazil originated in hot, dry rural areas of Minas Gerais before expanding south into urban centers. An unusually severe drought in this region may have created environmental pressures that sparked the reemergence of YFV in Brazil’s southeastern cities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.