In this paper, we propose an elegant solution that is directly addressing the bottlenecks of the traditional deep learning approaches and offers a clearly explainable internal architecture that can outperform the existing methods, requires very little computational resources (no need for GPUs) and short training times (in the order of seconds). The proposed approach, xDNN is using prototypes. Prototypes are actual training data samples (images), which are local peaks of the empirical data distribution called typicality as well as of the data density. This generative model is identified in a closed form and equates to the pdf but is derived automatically and entirely from the training data with no user-or problemspecific thresholds, parameters or intervention. The proposed xDNN offers a new deep learning architecture that combines reasoning and learning in a synergy. It is non-iterative and non-parametric, which explains its efficiency in terms of time and computational resources. From the user perspective, the proposed approach is clearly understandable to human users. We tested it on some well-known benchmark data sets such as iRoads and Caltech-256. xDNN outperforms the other methods including deep learning in terms of accuracy, time to train and offers a clearly explainable classifier. In fact, the result on the very hard Caltech-256 problem (which has 257 classes) represents a world record [1].
This paper provides a brief analytical review of the current state-of-the-art in relation to the explainability of artificial intelligence in the context of recent advances in machine learning and deep learning. The paper starts with a brief historical introduction and a taxonomy, and formulates the main challenges in terms of explainability building on the recently formulated National Institute of Standards four principles of explainability. Recently published methods related to the topic are then critically reviewed and analyzed. Finally, future directions for research are suggested.
The infection by SARS-CoV-2 which causes the COVID-19 disease has widely spread all over the world since the beginning of 2020. On January 30, 2020 the World Health Organization (WHO) declared a global health emergency.Researchers of different disciplines work along with public health officials to understand the SARS-CoV-2 pathogenesis and jointly with the policymakers urgently develop strategies to control the spread of this new disease. Recent findings have observed imaging patterns on computed tomography (CT) for patients infected by SARS-CoV-2. In this paper, we build a public available SARS-CoV-2 CT scan dataset, containing 1252 CT scans that are positive for SARS-CoV-2 infection (COVID-19) and 1230 CT scans for patients non-infected by SARS-CoV-2, 2482 CT scans in total. These data have been collected from real patients in hospitals from Sao Paulo, Brazil. The aim of this dataset is to encourage the research and development of artificial intelligent methods which are able to identify if a person is infected by SARS-CoV-2 through the analysis of his/her CT scans. As baseline result for this dataset we used an eXplainable Deep Learning approach (xDNN) which we could achieve an F1 score of 97.31% which is very promising. The proposed dataset is available www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset and xDNN code is available at https://github.com/Plamen-Eduardo/xDNN-SARS-CoV-2-CT-Scan.
As COVID-19 hounds the world, the common cause of finding a swift solution to manage the pandemic has brought together researchers, institutions, governments, and society at large. The Internet of Things (IoT), Artificial Intelligence (AI) -including Machine Learning (ML) and Big Data analyticsas well as Robotics and Blockchain, are the four decisive areas of technological innovation that have been ingenuity harnessed to fight this pandemic and future ones. While these highly interrelated smart and connected health technologies cannot resolve the pandemic overnight and may not be the only answer to the crisis, they can provide greater insight into the disease and support frontline efforts to prevent and control the pandemic. This paper provides a blend of discussions on the contribution of these digital technologies, propose several complementary and multidisciplinary techniques to combat COVID-19, offer opportunities for more holistic studies, and accelerate knowledge acquisition and scientific discoveries in pandemic research. First, four areas where IoT can contribute are discussed, namely, i) tracking and tracing, ii) Remote Patient Monitoring (RPM) by Wearable IoT (WIoT), iii) Personal Digital Twins (PDT), and iv) real-life use case: ICT/IoT solution in Korea. Second, the role and novel applications of AI are explained, namely: i) diagnosis and prognosis, ii) risk prediction, iii) vaccine and drug development, iv) research dataset, v) early warnings and alerts, vi) social control and fake news detection, and vii) communication and chatbot. Third, the main uses of robotics and drone technology are analyzed, including i) crowd surveillance, ii) public announcements, iii) screening and diagnosis, and iv) essential supply delivery. Finally, we discuss how Distributed Ledger Technologies (DLTs), of which blockchain is a common
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.