The availability of wearable devices (WDs) to collect biometric information and their use during activities of daily living is significantly increasing in the general population. These small electronic devices, which record fitness and health-related outcomes, have been broadly utilized in industries such as medicine, healthcare, and fitness. Since they are simple to use and progressively cheaper, they have also been used for numerous research purposes. However, despite their increasing popularity, most of these WDs do not accurately measure the proclaimed outcomes. In fact, research is equivocal about whether they are valid and reliable methods to specifically evaluate physical activity and health-related outcomes in older adults, since they are mostly designed and produced considering younger subjects’ physical and mental characteristics. Additionally, their constant evolution through continuous upgrades and redesigned versions, suggests the need for constant up-to-date reviews and research. Accordingly, this article aims to scrutinize the state-of-the-art scientific evidence about the usefulness of WDs, specifically on older adults, to monitor physical activity and health-related outcomes. This critical review not only aims to inform older consumers but also aid researchers in study design when selecting physical activity and healthcare monitoring devices for elderly people.
BackgroundProfessional dancers are at risk of developing low bone mineral density (BMD). However, whether low BMD phenotypes already exist in pre-vocational dance students is relatively unknown.AimTo cross-sectionally assess bone mass parameters in female dance students selected for professional dance training (first year vocational dance students) in relation to aged- and sex-matched controls.Methods34 female selected for professional dance training (10.9yrs ±0.7) and 30 controls (11.1yrs ±0.5) were examined. Anthropometry, pubertal development (Tanner) and dietary data (3-day food diary) were recorded. BMD and bone mineral content (BMC) at forearm, femur neck (FN) and lumbar spine (LS) were assessed using Dual-Energy X-Ray Absorptiometry. Volumetric densities were estimated by calculating bone mineral apparent density (BMAD).ResultsDancers were mainly at Tanner pubertal stage I (vs. stage IV in controls, p<0.001), and demonstrated significantly lower body weight (p<0.001) and height (p<0.01) than controls. Calorie intake was not different between groups, but calcium intake was significantly greater in dancers (p<0.05). Dancers revealed a significantly lower BMC and BMD values at all anatomical sites (p<0.001), and significantly lower BMAD values at the LS and FN (p<0.001). When adjusted for covariates (body weight, height, pubertal development and calcium intake), dance students continued to display a significantly lower BMD and BMAD at the FN (p<0.05; p<0.001) at the forearm (p<0.01).ConclusionBefore undergoing professional dance training, first year vocational dance students demonstrated inferior bone mass compared to controls. Longitudinal models are required to assess how bone health-status changes with time throughout professional training.
Whenever skeletal muscle insults occur, both by functional impositions or other injury forms, skeletal muscle repair (SMR) follows. The SMR succeeds when proper skeletal muscle regeneration and limited fibrosis ensue. Muscle fiber replenishment by fibrosis negatively affects the tissue quality and functionality and, furthermore, represents the worst post-injury phenotypic adaptation. Acute muscle injury treatment commonly follows the RICE method-rest, ice, compression, and elevation. This immediate immobilization seems to be beneficial to preserving the tissue structure and avoiding further destruction; however, if these interventions are delayed, the risk of muscle atrophy and its deleterious-related effects increase, with resultant impaired SMR. Moreover, a growing body of evidence shows positive skeletal muscle loading (SML) effects during SMR since it seems to effectively increase satellite cells (SCs) in their activation, proliferation, self-renewal, and differentiation capacities. Additionally, recent data show that SML may also influence the functions of other participants in SMR, compelling SMR to achieve less fibrotic accretion and accelerated muscle mass recovery. Moreover, given the SML effects on SCs, it is plausible to consider that these can increase the myofibers' basal myogenic potential. Thus, it seems relevant to scrutinize the possible acute and chronic SML therapeutic and prophylactic effects regarding the SMR process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.