Soil microorganisms are critical players in plant-soil interactions at the rhizosphere. We have identified a Bacillus megaterium strain that promoted growth and development of bean (Phaseolus vulgaris) and Arabidopsis thaliana plants. We used Arabidopsis thaliana as a model to characterize the effects of inoculation with B. megaterium on plant-growth promotion and postembryonic root development. B. megaterium inoculation caused an inhibition in primary-root growth followed by an increase in lateral-root number, lateral-root growth, and root-hair length. Detailed cellular analyses revealed that primary root-growth inhibition was caused both by a reduction in cell elongation and by reduction of cell proliferation in the root meristem. To study the contribution of auxin and ethylene signaling pathways in the alterations in root-system architecture elicited by B. megaterium, a suite of plant hormone mutants of Arabidopsis, including aux1-7, axr4-1, eir1, etr1, ein2, and rhd6, defective in either auxin or ethylene signaling, were evaluated for their responses to inoculation with this bacteria. When inoculated, all mutant lines tested showed increased biomass production. Moreover, aux1-7 and eir1, which sustain limited root-hair and lateral-root formation when grown in uninoculated medium, were found to increase the number of lateral roots and to develop long root hairs when inoculated with B. megaterium. The ethylene-signaling mutants etr1 and ein2 showed an induction in lateral-root formation and root-hair growth in response to bacterial inoculation. Taken together, our results suggest that plant-growth promotion and root-architectural alterations by B. megaterium may involve auxin- and-ethylene independent mechanisms.
Extensive communication occurs between plants and microorganisms during different stages of plant development in which signaling molecules from the two partners play an important role. Volatile organic compounds (VOCs) emission by certain plant-growth promoting rhizobacteria (PGPR) has been found to be involved in plant growth. However, little is known about the role of bacterial VOCs in plant developmental processes. In this work, we investigated the effects of inoculation with twelve bacterial strains isolated from the rhizosphere of lemon plants (Citrus aurantifolia) on growth and development of Arabidopsis thaliana seedlings. Several bacterial strains showed a plant growth promoting effect stimulating biomass production, which was related to differential modulation of root-system architecture. The isolates L263, L266, and L272a stimulated primary root growth and lateral root development, while L254, L265a and L265b did not significantly alter primary root growth but strongly promoted lateral root formation. VOC emission analysis by SPME-GC-MS identified aldehydes, ketones and alcohols as the most abundant compounds common to most rhizobacteria. Other VOCs, including 1-octen-3-ol and butyrolactone were strain specific. Characterization of L254, L266 and L272a bacterial isolates by 16S rDNA analysis revealed the identity of these strains as Bacillus cereus, Bacillus simplex and Bacillus sp, respectively. Taken together, our data suggest that rhizospheric bacterial strains can modulate both plant growth promotion and root-system architecture by differential VOC emission.
Accumulating evidence indicates that plant growth promoting rhizobacteria (PGPR) influence plant growth and development by the production of phytohormones such as auxins, gibberellins, and cytokinins. Little is known on the genetic basis and signal transduction components that mediate the beneficial effects of PGPRs in plants. We recently reported the identification of a Bacillus megaterium strain that promoted growth of A. thaliana and P. vulgaris seedlings. In this addendum, the role of cytokinin signaling in mediating the plant responses to bacterial inoculation was investigated using A. thaliana mutants lacking one, two or three of the putative cytokinin receptors CRE1, AHK2 and AHK3, and RPN12 a gene involved in cytokinin signaling. We show that plant growth promotion by B. megaterium is reduced in AHK2-2 single and double mutant combinations and in RPN12. Furthermore, the triple cytokinin-receptor CRE1-12/AHK2-2/AHK3-3 knockout was insensitive to inoculation in terms of growth promotion and root developmental responses. Our results indicate that cytokinin receptors play a complimentary role in plant growth promotion by B. megaterium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.