Resonance fluorescence-the light emitted when exciting resonantly a two-level system-is a popular quantum source as it seems to inherit its spectral properties from the driving laser and its statistical properties from the two-level system, thus providing a subnatural-linewidth single-photon source. However, these two qualities do not actually coexist in resonance fluorescence, since an optical target detecting these antibunched photons will either be spectrally broad itself and not benefit from the spectrally narrow source, or match spectrally with the source but in this case the antibunching will be spoiled. We first explain this failure through a decomposition of the field-emission and how this gets affected by frequency resolution. We then show how to restore the sought joint subnatural linewidth and antibunched properties, by interfering the resonance fluorescence output with a coherent beam. We finally discuss how the signal that is eventually generated in this way features a new type of quantum correlations, with a plateau of antibunching which suppresses much more strongly close photon pairs. This introduces a new concept of perfect single-photon source.
Photon correlations, as measured by Glauber's nth-order coherence functions g (n) , are highly sought to be minimized and/or maximized. In systems that are coherently driven, so-called blockades can give rise to strong correlations according to two scenarios based on level repulsion (conventional blockade) or interferences (unconventional blockade). Here, we show how these two approaches relate to the admixing of a coherent state with a quantum state such as a squeezed state for the simplest and most recurrent case. The emission from a variety of systems, such as resonance fluorescence, the Jaynes-Cummings model, or microcavity polaritons, as a few examples of a large family of quantum optical sources, are shown to be particular cases of such admixtures, that can further be doctored up externally by adding an amplitude-and phase-controlled coherent field with the effect of tuning the photon statistics from exactly zero to infinity. We show how such an understanding also allows to classify photon statistics throughout platforms according to conventional and unconventional features, with the effect of optimizing the correlations and with possible spectroscopic applications. In particular, we show how configurations that can realize simultaneously conventional and unconventional antibunching bring the best of both worlds: huge antibunching (unconventional) with large populations and being robust to dephasing (conventional).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.