BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
Robust optimization generates scenario‐based plans by a minimax optimization method to find optimal scenario for the trade‐off between target coverage robustness and organ‐at‐risk (OAR) sparing. In this study, 20 lung cancer patients with tumors located at various anatomical regions within the lungs were selected and robust optimization photon treatment plans including intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were generated. The plan robustness was analyzed using perturbed doses with setup error boundary of ±3 mm in anterior/posterior (AP), ±3 mm in left/right (LR), and ±5 mm in inferior/superior (IS) directions from isocenter. Perturbed doses for D99, D98, and D95 were computed from six shifted isocenter plans to evaluate plan robustness. Dosimetric study was performed to compare the internal target volume‐based robust optimization plans (ITV‐IMRT and ITV‐VMAT) and conventional PTV margin‐based plans (PTV‐IMRT and PTV‐VMAT). The dosimetric comparison parameters were: ITV target mean dose (Dmean), R95(D95/Dprescription), Paddick's conformity index (CI), homogeneity index (HI), monitor unit (MU), and OAR doses including lung (Dmean, V20 Gy and V15 Gy), chest wall, heart, esophagus, and maximum cord doses. A comparison of optimization results showed the robust optimization plan had better ITV dose coverage, better CI, worse HI, and lower OAR doses than conventional PTV margin‐based plans. Plan robustness evaluation showed that the perturbed doses of D99, D98, and D95 were all satisfied at least 99% of the ITV to received 95% of prescription doses. It was also observed that PTV margin‐based plans had higher MU than robust optimization plans. The results also showed robust optimization can generate plans that offer increased OAR sparing, especially for normal lungs and OARs near or abutting the target. Weak correlation was found between normal lung dose and target size, and no other correlation was observed in this study.
This study questions the independence of the two RTOG recommended metrics, R50% and D2cm in lung SBRT plans, and suggests that noncoplanar beams may provide better normal tissue sparing by reducing the intermediate dose falloff.
The response to radiation of polymer gel dosimeters has previously been measured by magnetic resonance imaging (MRI) in terms of changes in the water transverse relaxation rate (R ) or magnetization transfer (MT) parameters. Here we report a new MRI approach, based on detecting nuclear Overhauser enhancement (NOE) mediated saturation transfer effects, which can also be used to detect radiation and measure dose distributions in MAGIC-f (Methacrylic and Ascorbic Acid and Gelatin Initiated by Copper Solution with formaldehyde) polymer gels. Results show that the NOE effects produced by low powered radiofrequency (RF) irradiation at specific frequencies offset from water may be quantified by appropriate measurements and over a useful range depend linearly on the radiation dose. The NOE effect likely arises from the polymerization of methacrylic acid monomers which become less mobile, facilitating dipolar through-space cross-relaxation and/or relayed magnetization exchange between polymer and water protons. Our study suggests a potential new MRI method for polymer gel dosimetry.
Purpose: This is a dosimetric study comparing stereotactic body radiotherapy (SBRT) plans of spine tumors using Brainlab Elements Spine planning module against Eclipse RapidArc plans. Dose conformity, dose gradient, dose fall-off, and patient-specific quality assurance (QA) metrics were evaluated. Methods: Twenty patients were immobilized in supine position using half Vac‐Lok. A prescription dose of 16 Gy in a single fraction was planned for Varian TrueBeam. Conformal arc plans were generated with Pencil beam (PB), MonteCarlo (MC) in Elements, and RapidArc with Acuros XB algorithm in Eclipse using identical treatment geometry. Results: Eclipse, Elements PB, and Elements MC generated dosimetrically conformal plans having Inverse Paddick Conformity Index (IPCI) <1.3. All plans satisfied the dose constraints to target and OARs. Elements PB had a sharper gradient than Elements MC with average GI of 3.67(95% CI: 3.52-3.82) and 4.06 (95% CI: 3.93-4.20) respectively. Eclipse plans were more homogeneous with mean HI= 1.22 (95% CI: 1.20-1.23) that is lower than others. Average maximum clinical target volume (CTV) doses were higher in Elements MC with 22.31Gy (95% CI: 21.87-22.74), while PB plans have 21.15Gy (95% CI: 20.36-21.96), respectively. Elements MC and PB plans had lower average dose to 0.35 cc of spinal cord (D0.35cc) of 7.60Gy (95% CI: 7.18-8.02) and 8.42Gy (95% CI: 7.83-9.01). All plans had >95% points passing the gamma QA criteria at 3%/2 mm. Conclusion: All treatment plans achieved clinically acceptable target coverage >95% and meet spinal cord dose limits. Smart optimization in Brainlab Elements spine module produced dosimetrically superior plans by better spinal cord sparing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.