Unlike energy efficiency, in terms of exergy efficiency it is possible to compare the existing operation of an energy conversion system with the ideal operation. Exergy loses and exergy destruction make it possible to identify the shortcomings of an existing system, which should be improved immediately. With exergy analysis, it is possible to identify the priority actions that need to be taken in order to improve the functioning of the system: greater exergy loss prevention is the highest priority. Energy efficiency refers to the useful work and investments needed to obtain useful work and investments needed to obtain energy efficiency; this is important to some extent, but the effectiveness of exergy makes it possible to compare system performance with the ideal. Results shows that the highest exergy destruction of a single-stage compressor refrigeration system from all working condition is found when ambient temperature and freezer temperature difference is 10 ºC, pressure in compressor is 0.62 MPa, ammonia temperature after compressor is 90 ºC, total exergy destruction of single-stage compressor refrigeration system 97.84 kW. The highest exergy efficiency of a single-stage compressor refrigeration system from all the working conditions is found when ambient temperature and freezer temperature difference is 39 ºC, pressure in compressor is 0.45 MPa, ammonia temperature after compressor is 128 ºC, exergy efficiency of a single-stage compressor refrigeration system is 59.76 %. The highest total exergy destruction of a two-stage compressor refrigeration system from among all the working conditions is found to be when the ambient temperature and freezer temperature difference is at 13 ºC, pressure in compressor 0.44 MPa, ammonia temperature after compressor 76 ºC, total exergy destruction 83.86 kW. The highest exergy efficiency of a two-stage compressor refrigeration system from among all the working conditions is found to be at an ambient temperature and freezer temperature difference of 39 ºC, pressure in compressor 0.56 MPa, ammonia temperature after compressor 92 ºC, exergy efficiency 53.55 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.