A recent ''third wave'' of neural network (NN) approaches now delivers state-ofthe-art performance in many machine learning tasks, spanning speech recognition, computer vision, and natural language processing. Because these modern NNs often comprise multiple interconnected layers, work in this area is often referred to as deep learning. Recent years have witnessed an explosive growth of research into NN-based approaches to information retrieval (IR). A significant body of work has now been created. In this paper,
We present RobotReviewer, an open-source web-based system that uses machine learning and NLP to semi-automate biomedical evidence synthesis, to aid the practice of Evidence-Based Medicine. RobotReviewer processes full-text journal articles (PDFs) describing randomized controlled trials (RCTs). It appraises the reliability of RCTs and extracts text describing key trial characteristics (e.g., descriptions of the population) using novel NLP methods. RobotReviewer then automatically generates a report synthesising this information. Our goal is for RobotReviewer to automatically extract and synthesise the full-range of structured data needed to inform evidence-based practice.
We propose a method for learning disentangled representations of texts that code for distinct and complementary aspects, with the aim of affording efficient model transfer and interpretability. To induce disentangled embeddings, we propose an adversarial objective based on the (dis)similarity between triplets of documents with respect to specific aspects. Our motivating application is embedding biomedical abstracts describing clinical trials in a manner that disentangles the populations, interventions, and outcomes in a given trial. We show that our method learns representations that encode these clinically salient aspects, and that these can be effectively used to perform aspect-specific retrieval. We demonstrate that the approach generalizes beyond our motivating application in experiments on two multi-aspect review corpora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.