Twenty years ago, measurements on ice cores showed that the concentration of carbon dioxide in the atmosphere was lower during ice ages than it is today. As yet, there is no broadly accepted explanation for this difference. Current investigations focus on the ocean's 'biological pump', the sequestration of carbon in the ocean interior by the rain of organic carbon out of the surface ocean, and its effect on the burial of calcium carbonate in marine sediments. Some researchers surmise that the whole-ocean reservoir of algal nutrients was larger during glacial times, strengthening the biological pump at low latitudes, where these nutrients are currently limiting. Others propose that the biological pump was more efficient during glacial times because of more complete utilization of nutrients at high latitudes, where much of the nutrient supply currently goes unused. We present a version of the latter hypothesis that focuses on the open ocean surrounding Antarctica, involving both the biology and physics of that region.
Surface waters of the subtropical Sargasso Sea contain dissolved inorganic phosphate (DIP) concentrations of 0.2 to 1.0 nanomolar, which are sufficiently low to result in phosphorus control of primary production. The DIP concentrations in this area (which receives high inputs of iron-rich dust from arid regions of North Africa) are one to two orders of magnitude lower than surface levels in the North Pacific (where eolian iron inputs are much lower and water column denitrification is much more substantial). These data indicate a severe relative phosphorus depletion in the Atlantic. We hypothesize that nitrogen versus phosphorus limitation of primary production in the present-day ocean may be closely linked to iron supply through control of dinitrogen (N2) fixation, an iron-intensive metabolic process. Although the oceanic phosphorus inventory may set the upper limit for the total amount of organic matter produced in the ocean over geological time scales, at any instant in geological time, oceanic primary production may fall below this limit because of a persistent insufficient iron supply. By controlling N2 fixation, iron may control not only nitrogen versus phosphorus limitation but also carbon fixation and export stoichiometry and hence biological sequestration of atmospheric carbon dioxide.
In the oligotrophic North Atlantic and North Pacific, ultrafiltration studies show that concentrations of soluble iron and soluble iron-binding organic ligands are much lower than previously presumed "dissolved" concentrations, which were operationally defined as that passing through a 0.4-micrometer pore filter. Our studies indicate that substantial portions of the previously presumed "dissolved" iron (and probably also iron-binding ligands) are present in colloidal size range. The soluble iron and iron-binding organic ligands are depleted at the surface and enriched at depth, similar to distributions of major nutrients. By contrast, colloidal iron shows a maximum at the surface and a minimum in the upper nutricline. Our results suggest that "dissolved" iron may be less bioavailable to phytoplankton than previously thought and that iron removal through colloid aggregation and settling should be considered in models of the oceanic iron cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.